3,456 research outputs found

    System Abstractions for Scalable Application Development at the Edge

    Get PDF
    Recent years have witnessed an explosive growth of Internet of Things (IoT) devices, which collect or generate huge amounts of data. Given diverse device capabilities and application requirements, data processing takes place across a range of settings, from on-device to a nearby edge server/cloud and remote cloud. Consequently, edge-cloud coordination has been studied extensively from the perspectives of job placement, scheduling and joint optimization. Typical approaches focus on performance optimization for individual applications. This often requires domain knowledge of the applications, but also leads to application-specific solutions. Application development and deployment over diverse scenarios thus incur repetitive manual efforts. There are two overarching challenges to provide system-level support for application development at the edge. First, there is inherent heterogeneity at the device hardware level. The execution settings may range from a small cluster as an edge cloud to on-device inference on embedded devices, differing in hardware capability and programming environments. Further, application performance requirements vary significantly, making it even more difficult to map different applications to already heterogeneous hardware. Second, there are trends towards incorporating edge and cloud and multi-modal data. Together, these add further dimensions to the design space and increase the complexity significantly. In this thesis, we propose a novel framework to simplify application development and deployment over a continuum of edge to cloud. Our framework provides key connections between different dimensions of design considerations, corresponding to the application abstraction, data abstraction and resource management abstraction respectively. First, our framework masks hardware heterogeneity with abstract resource types through containerization, and abstracts away the application processing pipelines into generic flow graphs. Further, our framework further supports a notion of degradable computing for application scenarios at the edge that are driven by multimodal sensory input. Next, as video analytics is the killer app of edge computing, we include a generic data management service between video query systems and a video store to organize video data at the edge. We propose a video data unit abstraction based on a notion of distance between objects in the video, quantifying the semantic similarity among video data. Last, considering concurrent application execution, our framework supports multi-application offloading with device-centric control, with a userspace scheduler service that wraps over the operating system scheduler

    Visual-Semantic Learning

    Get PDF
    Visual-semantic learning is an attractive and challenging research direction aiming to understand complex semantics of heterogeneous data from two domains, i.e., visual signals (i.e., images and videos) and natural language (i.e., captions and questions). It requires memorizing the rich information in a single modality and a joint comprehension of multiple modalities. Artificial intelligence (AI) systems with human-level intelligence are claimed to learn like humans, such as efficiently leveraging brain memory for better comprehension, rationally incorporating common-sense knowledge into reasoning, quickly gaining in-depth understanding given a few samples, and analyzing relationships among abundant and informative events. However, these intelligence capacities are effortless for humans but challenging for machines. To bridge the discrepancy between human-level intelligence and present-day visual-semantic learning, we start from its basic understanding ability by studying the visual question answering (e.g., Image-QA and Video-QA) tasks from the perspectives of memory augmentation and common-sense knowledge incorporation. Furthermore, we stretch it to a more challenging situation with limited and partially unlabeled training data (i.e., Few-shot Visual-Semantic Learning) to imitate the fast learning ability of humans. Finally, to further enhance visual-semantic performance in natural videos with numerous spatio-temporal dynamics, we investigate exploiting event-correlated information for a comprehensive understanding of cross-modal semantics. To study the essential visual-semantic understanding ability of the human brain with memory, we first propose a novel Memory Augmented Deep Recurrent Neural Network (i.e., MA-DRNN) model for Video-QA, which features a new method for encoding videos and questions, and memory augmentation using the emerging Differentiable Neural Computer (i.e., DNC). Specifically, we encode semantic (i.e., questions) information before visual (i.e., videos) information, which leads to better visual-semantic representations. Moreover, we leverage Differentiable Neural Computer (with external memory) to store and retrieve valuable information in questions and videos and model the long-term visual-semantic dependency. In addition to basic understanding, to tackle visual-semantic reasoning that requires external knowledge beyond visible contents (e.g., KB-Image-QA), we propose a novel framework that endows the model with capabilities of answering more general questions and achieves better exploitation of external knowledge through generating Multiple Clues for Reasoning with Memory Neural Networks (i.e., MCR-MemNN). Specifically, a well-defined detector is adopted to predict image-question-related relation phrases, each delivering two complementary clues to retrieve the supporting facts from an external knowledge base (i.e., KB). These facts are encoded into a continuous embedding space using a content-addressable memory. Afterward, mutual interactions between visual-semantic representation and the supporting facts stored in memory are captured to distill the most relevant information in three modalities (i.e., image, question, and KB). Finally, the optimal answer is predicted by choosing the supporting fact with the highest score. Furthermore, to enable a fast, in-depth understanding given a small number of samples, especially with heterogeneity in the multi-modal scenarios such as image question answering (i.e., Image-QA) and image captioning (i.e., IC), we study the few-shot visual-semantic learning and present the Hierarchical Graph ATtention Network (i.e., HGAT). This two-stage network models the intra- and inter-modal relationships with limited image-text samples. The main contributions of HGAT can be summarized as follows: 1) it sheds light on tackling few-shot multi-modal learning problems, which focuses primarily, but not exclusively, on visual and semantic modalities, through better exploitation of the intra-relationship of each modality and an attention-based co-learning framework between modalities using a hierarchical graph-based architecture; 2) it achieves superior performance on both visual question answering and image captioning in the few-shot setting; 3) it can be easily extended to the semi-supervised setting where image-text samples are partially unlabeled. Although various attention mechanisms have been utilized to manage contextualized representations by modeling intra- and inter-modal relationships of the two modalities, one limitation of the predominant visual-semantic methods is the lack of reasoning with event correlation, sensing, and analyzing relationships among abundant and informative events contained in the video. To this end, we introduce the dense caption modality as a new auxiliary and distill event-correlated information to infer the correct answer. We propose a novel end-to-end trainable model, Event-Correlated Graph Neural Networks (EC-GNNs), to perform cross-modal reasoning over information from the three modalities (i.e., caption, video, and question). Besides exploiting a new modality, we employ cross-modal reasoning modules to explicitly model inter-modal relationships and aggregate relevant information across different modalities. We propose a question-guided self-adaptive multi-modal fusion module to collect the question-oriented and event-correlated evidence through multi-step reasoning. To evaluate our proposed models, we conduct extensive experiments on VTW, MSVD-QA, and TGIF-QA datasets for Video-QA task, Toronto COCO-QA, Visual Genome-QA datasets for few-shot Image-QA task, COCO-FITB dataset for few-shot IC task, and FVQA, Visual7W + ConceptNet datasets for KB-Image-QA task. The experimental results justify these models’ effectiveness and superiority over baseline methods

    A survey on knowledge-enhanced multimodal learning

    Full text link
    Multimodal learning has been a field of increasing interest, aiming to combine various modalities in a single joint representation. Especially in the area of visiolinguistic (VL) learning multiple models and techniques have been developed, targeting a variety of tasks that involve images and text. VL models have reached unprecedented performances by extending the idea of Transformers, so that both modalities can learn from each other. Massive pre-training procedures enable VL models to acquire a certain level of real-world understanding, although many gaps can be identified: the limited comprehension of commonsense, factual, temporal and other everyday knowledge aspects questions the extendability of VL tasks. Knowledge graphs and other knowledge sources can fill those gaps by explicitly providing missing information, unlocking novel capabilities of VL models. In the same time, knowledge graphs enhance explainability, fairness and validity of decision making, issues of outermost importance for such complex implementations. The current survey aims to unify the fields of VL representation learning and knowledge graphs, and provides a taxonomy and analysis of knowledge-enhanced VL models

    Large-scale Multi-Modal Pre-trained Models: A Comprehensive Survey

    Full text link
    With the urgent demand for generalized deep models, many pre-trained big models are proposed, such as BERT, ViT, GPT, etc. Inspired by the success of these models in single domains (like computer vision and natural language processing), the multi-modal pre-trained big models have also drawn more and more attention in recent years. In this work, we give a comprehensive survey of these models and hope this paper could provide new insights and helps fresh researchers to track the most cutting-edge works. Specifically, we firstly introduce the background of multi-modal pre-training by reviewing the conventional deep learning, pre-training works in natural language process, computer vision, and speech. Then, we introduce the task definition, key challenges, and advantages of multi-modal pre-training models (MM-PTMs), and discuss the MM-PTMs with a focus on data, objectives, network architectures, and knowledge enhanced pre-training. After that, we introduce the downstream tasks used for the validation of large-scale MM-PTMs, including generative, classification, and regression tasks. We also give visualization and analysis of the model parameters and results on representative downstream tasks. Finally, we point out possible research directions for this topic that may benefit future works. In addition, we maintain a continuously updated paper list for large-scale pre-trained multi-modal big models: https://github.com/wangxiao5791509/MultiModal_BigModels_SurveyComment: Accepted by Machine Intelligence Researc

    The INCF Digital Atlasing Program: Report on Digital Atlasing Standards in the Rodent Brain

    Get PDF
    The goal of the INCF Digital Atlasing Program is to provide the vision and direction necessary to make the rapidly growing collection of multidimensional data of the rodent brain (images, gene expression, etc.) widely accessible and usable to the international research community. This Digital Brain Atlasing Standards Task Force was formed in May 2008 to investigate the state of rodent brain digital atlasing, and formulate standards, guidelines, and policy recommendations.

Our first objective has been the preparation of a detailed document that includes the vision and specific description of an infrastructure, systems and methods capable of serving the scientific goals of the community, as well as practical issues for achieving
the goals. This report builds on the 1st INCF Workshop on Mouse and Rat Brain Digital Atlasing Systems (Boline et al., 2007, _Nature Preceedings_, doi:10.1038/npre.2007.1046.1) and includes a more detailed analysis of both the current state and desired state of digital atlasing along with specific recommendations for achieving these goals

    Multi-view Representation Learning for Unifying Languages, Knowledge and Vision

    Get PDF
    The growth of content on the web has raised various challenges, yet also provided numerous opportunities. Content exists in varied forms such as text appearing in different languages, entity-relationship graph represented as structured knowledge and as a visual embodiment like images/videos. They are often referred to as modalities. In many instances, the different amalgamation of modalities co-exists to complement each other or to provide consensus. Thus making the content either heterogeneous or homogeneous. Having an additional point of view for each instance in the content is beneficial for data-driven learning and intelligent content processing. However, despite having availability of such content. Most advancements made in data-driven learning (i.e., machine learning) is by solving tasks separately for the single modality. The similar endeavor was not shown for the challenges which required input either from all or subset of them. In this dissertation, we develop models and techniques that can leverage multiple views of heterogeneous or homogeneous content and build a shared representation for aiding several applications which require a combination of modalities mentioned above. In particular, we aim to address applications such as content-based search, categorization, and generation by providing several novel contributions. First, we develop models for heterogeneous content by jointly modeling diverse representations emerging from two views depicting text and image by learning their correlation. To be specific, modeling such correlation is helpful to retrieve cross-modal content. Second, we replace the heterogeneous content with homogeneous to learn a common space representation for content categorization across languages. Furthermore, we develop models that take input from both homogeneous and heterogeneous content to facilitate the construction of common space representation from more than two views. Specifically, representation is used to generate one view from another. Lastly, we describe a model that can handle missing views, and demonstrate that the model can generate missing views by utilizing external knowledge. We argue that techniques the models leverage internally provide many practical benefits and lot of immediate value applications. From the modeling perspective, our contributed model design in this thesis can be summarized under the phrase Multi-view Representation Learning( MVRL ). These models are variations and extensions of shallow statistical and deep neural networks approaches that can jointly optimize and exploit all views of the input content arising from different independent representations. We show that our models advance state of the art, but not limited to tasks such as cross-modal retrieval, cross-language text classification, image-caption generation in multiple languages and caption generation for images containing unseen visual object categories

    HUC-HISF: A Hybrid Intelligent Security Framework for Human-centric Ubiquitous Computing

    Get PDF
    制度:新 ; 報告番号:乙2336号 ; 学位の種類:博士(人間科学) ; 授与年月日:2012/1/18 ; 早大学位記番号:新584

    Emotion-aware cross-modal domain adaptation in video sequences

    Get PDF
    corecore