6,276 research outputs found

    Multimodal Data Fusion and Quantitative Analysis for Medical Applications

    Get PDF
    Medical big data is not only enormous in its size, but also heterogeneous and complex in its data structure, which makes conventional systems or algorithms difficult to process. These heterogeneous medical data include imaging data (e.g., Positron Emission Tomography (PET), Computerized Tomography (CT), Magnetic Resonance Imaging (MRI)), and non-imaging data (e.g., laboratory biomarkers, electronic medical records, and hand-written doctor notes). Multimodal data fusion is an emerging vital field to address this urgent challenge, aiming to process and analyze the complex, diverse and heterogeneous multimodal data. The fusion algorithms bring great potential in medical data analysis, by 1) taking advantage of complementary information from different sources (such as functional-structural complementarity of PET/CT images) and 2) exploiting consensus information that reflects the intrinsic essence (such as the genetic essence underlying medical imaging and clinical symptoms). Thus, multimodal data fusion benefits a wide range of quantitative medical applications, including personalized patient care, more optimal medical operation plan, and preventive public health. Though there has been extensive research on computational approaches for multimodal fusion, there are three major challenges of multimodal data fusion in quantitative medical applications, which are summarized as feature-level fusion, information-level fusion and knowledge-level fusion: • Feature-level fusion. The first challenge is to mine multimodal biomarkers from high-dimensional small-sample multimodal medical datasets, which hinders the effective discovery of informative multimodal biomarkers. Specifically, efficient dimension reduction algorithms are required to alleviate "curse of dimensionality" problem and address the criteria for discovering interpretable, relevant, non-redundant and generalizable multimodal biomarkers. • Information-level fusion. The second challenge is to exploit and interpret inter-modal and intra-modal information for precise clinical decisions. Although radiomics and multi-branch deep learning have been used for implicit information fusion guided with supervision of the labels, there is a lack of methods to explicitly explore inter-modal relationships in medical applications. Unsupervised multimodal learning is able to mine inter-modal relationship as well as reduce the usage of labor-intensive data and explore potential undiscovered biomarkers; however, mining discriminative information without label supervision is an upcoming challenge. Furthermore, the interpretation of complex non-linear cross-modal associations, especially in deep multimodal learning, is another critical challenge in information-level fusion, which hinders the exploration of multimodal interaction in disease mechanism. • Knowledge-level fusion. The third challenge is quantitative knowledge distillation from multi-focus regions on medical imaging. Although characterizing imaging features from single lesions using either feature engineering or deep learning methods have been investigated in recent years, both methods neglect the importance of inter-region spatial relationships. Thus, a topological profiling tool for multi-focus regions is in high demand, which is yet missing in current feature engineering and deep learning methods. Furthermore, incorporating domain knowledge with distilled knowledge from multi-focus regions is another challenge in knowledge-level fusion. To address the three challenges in multimodal data fusion, this thesis provides a multi-level fusion framework for multimodal biomarker mining, multimodal deep learning, and knowledge distillation from multi-focus regions. Specifically, our major contributions in this thesis include: • To address the challenges in feature-level fusion, we propose an Integrative Multimodal Biomarker Mining framework to select interpretable, relevant, non-redundant and generalizable multimodal biomarkers from high-dimensional small-sample imaging and non-imaging data for diagnostic and prognostic applications. The feature selection criteria including representativeness, robustness, discriminability, and non-redundancy are exploited by consensus clustering, Wilcoxon filter, sequential forward selection, and correlation analysis, respectively. SHapley Additive exPlanations (SHAP) method and nomogram are employed to further enhance feature interpretability in machine learning models. • To address the challenges in information-level fusion, we propose an Interpretable Deep Correlational Fusion framework, based on canonical correlation analysis (CCA) for 1) cohesive multimodal fusion of medical imaging and non-imaging data, and 2) interpretation of complex non-linear cross-modal associations. Specifically, two novel loss functions are proposed to optimize the discovery of informative multimodal representations in both supervised and unsupervised deep learning, by jointly learning inter-modal consensus and intra-modal discriminative information. An interpretation module is proposed to decipher the complex non-linear cross-modal association by leveraging interpretation methods in both deep learning and multimodal consensus learning. • To address the challenges in knowledge-level fusion, we proposed a Dynamic Topological Analysis framework, based on persistent homology, for knowledge distillation from inter-connected multi-focus regions in medical imaging and incorporation of domain knowledge. Different from conventional feature engineering and deep learning, our DTA framework is able to explicitly quantify inter-region topological relationships, including global-level geometric structure and community-level clusters. K-simplex Community Graph is proposed to construct the dynamic community graph for representing community-level multi-scale graph structure. The constructed dynamic graph is subsequently tracked with a novel Decomposed Persistence algorithm. Domain knowledge is incorporated into the Adaptive Community Profile, summarizing the tracked multi-scale community topology with additional customizable clinically important factors

    Multimodal Grounding for Language Processing

    Get PDF
    This survey discusses how recent developments in multimodal processing facilitate conceptual grounding of language. We categorize the information flow in multimodal processing with respect to cognitive models of human information processing and analyze different methods for combining multimodal representations. Based on this methodological inventory, we discuss the benefit of multimodal grounding for a variety of language processing tasks and the challenges that arise. We particularly focus on multimodal grounding of verbs which play a crucial role for the compositional power of language.Comment: The paper has been published in the Proceedings of the 27 Conference of Computational Linguistics. Please refer to this version for citations: https://www.aclweb.org/anthology/papers/C/C18/C18-1197

    Deep Residual Adaptive Neural Network Based Feature Extraction for Cognitive Computing with Multimodal Sentiment Sensing and Emotion Recognition Process

    Get PDF
    For the healthcare framework, automatic recognition of patients’ emotions is considered to be a good facilitator. Feedback about the status of patients and satisfaction levels can be provided automatically to the stakeholders of the healthcare industry. Multimodal sentiment analysis of human is considered as the attractive and hot topic of research in artificial intelligence (AI) and is the much finer classification issue which differs from other classification issues. In cognitive science, as emotional processing procedure has inspired more, the abilities of both binary and multi-classification tasks are enhanced by splitting complex issues to simpler ones which can be handled more easily. This article proposes an automated audio-visual emotional recognition model for a healthcare industry. The model uses Deep Residual Adaptive Neural Network (DeepResANNet) for feature extraction where the scores are computed based on the differences between feature and class values of adjacent instances. Based on the output of feature extraction, positive and negative sub-nets are trained separately by the fusion module thereby improving accuracy. The proposed method is extensively evaluated using eNTERFACE’05, BAUM-2 and MOSI databases by comparing with three standard methods in terms of various parameters. As a result, DeepResANNet method achieves 97.9% of accuracy, 51.5% of RMSE, 42.5% of RAE and 44.9%of MAE in 78.9sec for eNTERFACE’05 dataset.  For BAUM-2 dataset, this model achieves 94.5% of accuracy, 46.9% of RMSE, 42.9%of RAE and 30.2% MAE in 78.9 sec. By utilizing MOSI dataset, this model achieves 82.9% of accuracy, 51.2% of RMSE, 40.1% of RAE and 37.6% of MAE in 69.2sec. By analysing all these three databases, eNTERFACE’05 is best in terms of accuracy achieving 97.9%. BAUM-2 is best in terms of error rate as it achieved 30.2 % of MAE and 46.9% of RMSE. Finally MOSI is best in terms of RAE and minimal response time by achieving 40.1% of RAE in 69.2 sec
    corecore