1,435 research outputs found

    Effective Handover Technique in Cluster Based MANET Using Cooperative Communication

    Full text link
    Mobile ad hoc networks (MANETs) are becoming increasingly common now a days and typical network loads considered for MANETs are increasing as applications evolve. This increases the importance of bandwidth efficiency and requirements on energy consumption delay and jitter. Coordinated channel access protocols have been shown to be well suited for MANETs under uniform load distributions. However, these protocols are not well suited for non-uniform load distributions as uncoordinated channel access protocols due to the lack of on-demand dynamic channel allocation mechanisms that exist in infrastructure based coordinated protocols. We have considered a lightweight dynamic channel allocation algorithm and a cooperative load balancing strategy that are helpful for the cluster based MANETs and an effective handover technique to improve the increased packet transmission mechanism. This helps in reduce jitter, packet delay and packet transfer speed, we use a novel handover algorithm to address this problem We present protocols that utilize these mechanisms to improve performance in terms of throughput, energy consumption and inter-packet delay variation (IPDV)

    Modeling And Dynamic Resource Allocation For High Definition And Mobile Video Streams

    Get PDF
    Video streaming traffic has been surging in the last few years, which has resulted in an increase of its Internet traffic share on a daily basis. The importance of video streaming management has been emphasized with the advent of High Definition: HD) video streaming, as it requires by its nature more network resources. In this dissertation, we provide a better support for managing HD video traffic over both wireless and wired networks through several contributions. We present a simple, general and accurate video source model: Simplified Seasonal ARIMA Model: SAM). SAM is capable of capturing the statistical characteristics of video traces with less than 5% difference from their calculated optimal models. SAM is shown to be capable of modeling video traces encoded with MPEG-4 Part2, MPEG-4 Part10, and Scalable Video Codec: SVC) standards, using various encoding settings. We also provide a large and publicly-available collection of HD video traces along with their analyses results. These analyses include a full statistical analysis of HD videos, in addition to modeling, factor and cluster analyses. These results show that by using SAM, we can achieve up to 50% improvement in video traffic prediction accuracy. In addition, we developed several video tools, including an HD video traffic generator based on our model. Finally, to improve HD video streaming resource management, we present a SAM-based delay-guaranteed dynamic resource allocation: DRA) scheme that can provide up to 32.4% improvement in bandwidth utilization

    VIRTUALIZED BASEBAND UNITS CONSOLIDATION IN ADVANCED LTE NETWORKS USING MOBILITY- AND POWER-AWARE ALGORITHMS

    Get PDF
    Virtualization of baseband units in Advanced Long-Term Evolution networks and a rapid performance growth of general purpose processors naturally raise the interest in resource multiplexing. The concept of resource sharing and management between virtualized instances is not new and extensively used in data centers. We adopt some of the resource management techniques to organize virtualized baseband units on a pool of hosts and investigate the behavior of the system in order to identify features which are particularly relevant to mobile environment. Subsequently, we introduce our own resource management algorithm specifically targeted to address some of the peculiarities identified by experimental results

    Preliminary study of cooperation in hybrid ad-hoc networks

    Get PDF
    In this paper, we present a first approach to evolve a cooperative behavior in ad hoc networks. Since wireless nodes are energy constrained, it may not be in the best interest of a node to always accept relay requests. On the other hand, if all nodes decide not to expend energy in relaying, then network throughput will drop dramatically. Both these extreme scenarios are unfavorable to the interests of a user. In this paper we deal with the issue of user cooperation in ad hoc networks by developing the algorithm called Generous Tit-For-Tat. We assume that nodes are rational, i.e., their actions are strictly determined by self-interest, and that each node is associated with a minimum lifetime constraint. Given these lifetime constraints and the assumption of rational behavior, we study the added behavior of the network.En este proyecto mostramos un primer acercamiento a la evolución de las redes Ad-Hoc cooperativas. Puesto que los nodos wireless disponen de energía finita, puede que no estén interesados en aceptar transmitir tráfico de otros nodos. Por otra parte, si ningún nodo decide gastar energía en retransmitir tráfico de otros, entonces la tasa de transferencia en la red cae críticamente. Estos casos extremos son desfavorables para el usuario. En este trabajo tratamos estas cuestiones gracias al desarrollo de un algoritmo llamado "Generous Tit-For Tat". Asumiremos que los nodos son egoístas y tienen energía finita, así que las decisiones se determinarán por propio interés y cada nodo será asociado con un tiempo limitado de energía. Dadas esas limitaciones y la suposición del comportamiento racional estudiaremos el comportamiento agregado de la red.En aquest treball mostrem una primera aproximació a l'evolució de les xarxes Ad-Hoc cooperatives. Donat que els nodes wireless disposen d'energia finita, poden no estar interessats en transmetre tràfic d'altres nodes. Per altra banda, si cap node decideix gastar energia en passar tràfic d'altres, llavors la tassa de transferència a la xarxa cau críticament. Aquests casos extrems son desfavorables per l'usuari. En aquest treball tractem aquestes qüestions gràcies al desenvolupament d'un algoritme anomenat "Generous Tit-For-Tat". Assumirem que els nodes son egoistes y tenen energia finita, així que les decisions es determinaran pel seu propi interès i cada node s'associarà amb un temps limitat d'energia. Donades aquestes limitacions y la suposició del comportament racional, estudiarem el comportament agregat de la xarxa.Nota: Aquest document conté originàriament altre material i/o programari només consultable a la Biblioteca de Ciència i Tecnologia

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Energy Efficient Reduced Complexity Multi-Service, Multi-Channel Scheduling Techniques

    Get PDF
    The need for energy efficient communications is essential in current and next-generation wireless communications systems. A large component of energy expenditure in mobile devices is in the mobile radio interface. Proper scheduling and resource allocation techniques that exploit instantaneous and long-term average knowledge of the channel, queue state and quality of service parameters can be used to improve the energy efficiency of communication. This thesis focuses on exploiting queue and channel state information as well as quality of service parameters in order to design energy efficient scheduling techniques. The proposed designs are for multi-stream, multi-channel systems and in general have high computational complexity. The large contributions of this thesis are in both the design of optimal/near-optimal scheduling/resource allocation schemes for these systems as well as proposing complexity reduction methods in their design. Methods are proposed for both a MIMO downlink system as well as an LTE uplink system. The effect of power efficiency on quality of service parameters is well studied as well as complexity/efficiency comparisons between optimal/near optimal allocation

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic
    corecore