2,205 research outputs found

    A Practical Approach to Protect IoT Devices against Attacks and Compile Security Incident Datasets

    Get PDF
    open access articleThe Internet of Things (IoT) introduced the opportunity of remotely manipulating home appliances (such as heating systems, ovens, blinds, etc.) using computers and mobile devices. This idea fascinated people and originated a boom of IoT devices together with an increasing demand that was difficult to support. Many manufacturers quickly created hundreds of devices implementing functionalities but neglected some critical issues pertaining to device security. This oversight gave rise to the current situation where thousands of devices remain unpatched having many security issues that manufacturers cannot address after the devices have been produced and deployed. This article presents our novel research protecting IOT devices using Berkeley Packet Filters (BPFs) and evaluates our findings with the aid of our Filter.tlk tool, which is able to facilitate the development of BPF expressions that can be executed by GNU/Linux systems with a low impact on network packet throughput

    The HSS/SNiC : a conceptual framework for collapsing security down to the physical layer

    Get PDF
    This work details the concept of a novel network security model called the Super NIC (SNIC) and a Hybrid Super Switch (HSS). The design will ultimately incorporate deep packet inspection (DPI), intrusion detection and prevention (IDS/IPS) functions, as well as network access control technologies therefore making all end-point network devices inherently secure. The SNIC and HSS functions are modelled using a transparent GNU/Linux Bridge with the Netfilter framework
    corecore