551 research outputs found

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    Knowledge-aware Deep Framework for Collaborative Skin Lesion Segmentation and Melanoma Recognition

    Full text link
    Deep learning techniques have shown their superior performance in dermatologist clinical inspection. Nevertheless, melanoma diagnosis is still a challenging task due to the difficulty of incorporating the useful dermatologist clinical knowledge into the learning process. In this paper, we propose a novel knowledge-aware deep framework that incorporates some clinical knowledge into collaborative learning of two important melanoma diagnosis tasks, i.e., skin lesion segmentation and melanoma recognition. Specifically, to exploit the knowledge of morphological expressions of the lesion region and also the periphery region for melanoma identification, a lesion-based pooling and shape extraction (LPSE) scheme is designed, which transfers the structure information obtained from skin lesion segmentation into melanoma recognition. Meanwhile, to pass the skin lesion diagnosis knowledge from melanoma recognition to skin lesion segmentation, an effective diagnosis guided feature fusion (DGFF) strategy is designed. Moreover, we propose a recursive mutual learning mechanism that further promotes the inter-task cooperation, and thus iteratively improves the joint learning capability of the model for both skin lesion segmentation and melanoma recognition. Experimental results on two publicly available skin lesion datasets show the effectiveness of the proposed method for melanoma analysis.Comment: Pattern Recognitio

    Skin Lesion Analysis Towards Melanoma Detection Using Deep Learning Network

    Full text link
    Skin lesion is a severe disease in world-wide extent. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons, e.g. low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. International Skin Imaging Collaboration (ISIC) is a challenge focusing on the automatic analysis of skin lesion. In this paper, we proposed two deep learning methods to address all the three tasks announced in ISIC 2017, i.e. lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3). A deep learning framework consisting of two fully-convolutional residual networks (FCRN) is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU) is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. To our best knowledges, we are not aware of any previous work proposed for this task. The proposed deep learning frameworks were evaluated on the ISIC 2017 testing set. Experimental results show the promising accuracies of our frameworks, i.e. 0.718 for task 1, 0.833 for task 2 and 0.823 for task 3 were achieved.Comment: ISIC201

    METHODS FOR INCREASING THE CLASSIFICATION ACCURACY BASED ON MODIFICATIONS OF THE BASIC ARCHITECTURE OF CONVOLUTIONAL NEURAL NETWORKS

    Get PDF
    Object of research: basic architectures of deep learning neural networks. Investigated problem: insufficient accuracy of solving the classification problem based on the basic architectures of deep learning neural networks. An increase in accuracy requires a significant complication of the architecture, which, in turn, leads to an increase in the required computing resources, as well as the consumption of video memory and the cost of learning/output time. Therefore, the problem arises of determining such methods for modifying basic architectures that improve the classification accuracy and require insignificant additional computing resources. Main scientific results: based on the analysis of existing methods for improving the classification accuracy on the convolutional networks of basic architectures, it is determined what is most effective: scaling the ScanNet architecture, learning the ensemble of TreeNet models, integrating several CBNet backbone networks. For computational experiments, these modifications of the basic architectures are implemented, as well as their combinations: ScanNet + TreeNet, ScanNet + CBNet. The effectiveness of these methods in comparison with basic architectures has been proven when solving the problem of recognizing malignant tumors with diagnostic images – SIIM-ISIC Melanoma Classification, the train/test set of which is presented on the Kaggle platform. The accuracy value for the area under the ROC curve metric has increased from 0.94489 (basic architecture network) to 0.96317 (network with ScanNet + CBNet modifications). At the same time, the output compared to the basic architecture (EfficientNet-b5) increased from 440 to 490 seconds, and the consumption of video memory increased from 8 to 9.2 gigabytes, which is acceptable. Innovative technological product: methods for achieving high recognition accuracy from a diagnostic signal based on deep learning neural networks of basic architectures. Scope of application of the innovative technological product: automatic diagnostics systems in the following areas: medicine, seismology, astronomy (classification by images) onboard control systems and systems for monitoring transport and vehicle flows or visitors (recognition of scenes with camera frames)
    corecore