10,609 research outputs found

    Computational Approaches to Measuring the Similarity of Short Contexts : A Review of Applications and Methods

    Full text link
    Measuring the similarity of short written contexts is a fundamental problem in Natural Language Processing. This article provides a unifying framework by which short context problems can be categorized both by their intended application and proposed solution. The goal is to show that various problems and methodologies that appear quite different on the surface are in fact very closely related. The axes by which these categorizations are made include the format of the contexts (headed versus headless), the way in which the contexts are to be measured (first-order versus second-order similarity), and the information used to represent the features in the contexts (micro versus macro views). The unifying thread that binds together many short context applications and methods is the fact that similarity decisions must be made between contexts that share few (if any) words in common.Comment: 23 page

    Semantics-based selection of everyday concepts in visual lifelogging

    Get PDF
    Concept-based indexing, based on identifying various semantic concepts appearing in multimedia, is an attractive option for multimedia retrieval and much research tries to bridge the semantic gap between the mediaā€™s low-level features and high-level semantics. Research into concept-based multimedia retrieval has generally focused on detecting concepts from high quality media such as broadcast TV or movies, but it is not well addressed in other domains like lifelogging where the original data is captured with poorer quality. We argue that in noisy domains such as lifelogging, the management of data needs to include semantic reasoning in order to deduce a set of concepts to represent lifelog content for applications like searching, browsing or summarisation. Using semantic concepts to manage lifelog data relies on the fusion of automatically-detected concepts to provide a better understanding of the lifelog data. In this paper, we investigate the selection of semantic concepts for lifelogging which includes reasoning on semantic networks using a density-based approach. In a series of experiments we compare different semantic reasoning approaches and the experimental evaluations we report on lifelog data show the efficacy of our approach

    EntiTables: Smart Assistance for Entity-Focused Tables

    Full text link
    Tables are among the most powerful and practical tools for organizing and working with data. Our motivation is to equip spreadsheet programs with smart assistance capabilities. We concentrate on one particular family of tables, namely, tables with an entity focus. We introduce and focus on two specific tasks: populating rows with additional instances (entities) and populating columns with new headings. We develop generative probabilistic models for both tasks. For estimating the components of these models, we consider a knowledge base as well as a large table corpus. Our experimental evaluation simulates the various stages of the user entering content into an actual table. A detailed analysis of the results shows that the models' components are complimentary and that our methods outperform existing approaches from the literature.Comment: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '17), 201

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm usersā€™ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ā€˜unannotatedā€™ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ā€˜Bag of Visual Wordsā€™ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ā€˜non-informative visual wordsā€™ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    Using Dempster-Shaferā€™s evidence theory for query expansion based on freebase knowledge

    Get PDF
    Query expansion is generally a useful technique in improving search performance. However, some expanded query terms obtained by traditional statistical methods (e.g., pseudo-relevance feedback) may not be relevant to the user's information need, while some relevant terms may not be contained in the feedback documents at all. Recent studies utilize external resources to detect terms that are related to the query, and then adopt these terms in query expansion. In this paper, we present a study in the use of Freebase, which is an open source general-purpose ontology, as a source for deriving expansion terms. FreeBase provides a graph-based model of human knowledge, from which a rich and multi-step structure of instances related to the query concept can be extracted, as a complement to the traditional statistical approaches to query expansion. We propose a novel method, based on the well-principled Dempster-Shafer's (D-S) evidence theory, to measure the certainty of expansion terms from the Freebase structure. The expanded query model is then combined with a state of the art statistical query expansion model - the Relevance Model (RM3). Experiments show that the proposed method achieves significant improvements over RM3
    • ā€¦
    corecore