285 research outputs found

    Design of secure and trustworthy system-on-chip architectures using hardware-based root-of-trust techniques

    Get PDF
    Cyber-security is now a critical concern in a wide range of embedded computing modules, communications systems, and connected devices. These devices are used in medical electronics, automotive systems, power grid systems, robotics, and avionics. The general consensus today is that conventional approaches and software-only schemes are not sufficient to provide desired security protections and trustworthiness. Comprehensive hardware-software security solutions so far have remained elusive. One major challenge is that in current system-on-chip (SoCs) designs, processing elements (PEs) and executable codes with varying levels of trust, are all integrated on the same computing platform to share resources. This interdependency of modules creates a fertile attack ground and represents the Achilles’ heel of heterogeneous SoC architectures. The salient research question addressed in this dissertation is “can one design a secure computer system out of non-secure or untrusted computing IP components and cores?”. In response to this question, we establish a generalized, user/designer-centric set of design principles which intend to advance the construction of secure heterogeneous multi-core computing systems. We develop algorithms, models of computation, and hardware security primitives to integrate secure and non-secure processing elements into the same chip design while aiming for: (a) maintaining individual core’s security; (b) preventing data leakage and corruption; (c) promoting data and resource sharing among the cores; and (d) tolerating malicious behaviors from untrusted processing elements and software applications. The key contributions of this thesis are: 1. The introduction of a new architectural model for integrating processing elements with different security and trust levels, i.e., secure and non-secure cores with trusted and untrusted provenances; 2. A generalized process isolation design methodology for the new architecture model that covers both the software and hardware layers to (i) create hardware-assisted virtual logical zones, and (ii) perform both static and runtime security, privilege level and trust authentication checks; 3. A set of secure protocols and hardware root-of-trust (RoT) primitives to support the process isolation design and to provide the following functionalities: (i) hardware immutable identities – using physical unclonable functions, (ii) core hijacking and impersonation resistance – through a blind signature scheme, (iii) threshold-based data access control – with a robust and adaptive secure secret sharing algorithm, (iv) privacy-preserving authorization verification – by proposing a group anonymous authentication algorithm, and (v) denial of resource or denial of service attack avoidance – by developing an interconnect network routing algorithm and a memory access mechanism according to user-defined security policies. 4. An evaluation of the security of the proposed hardware primitives in the post-quantum era, and possible extensions and algorithmic modifications for their post-quantum resistance. In this dissertation, we advance the practicality of secure-by-construction methodologies in SoC architecture design. The methodology allows for the use of unsecured or untrusted processing elements in the construction of these secure architectures and tries to extend their effectiveness into the post-quantum computing era

    Cyber Security of Critical Infrastructures

    Get PDF
    Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods

    Medium Access Control in Energy Harvesting - Wireless Sensor Networks

    Get PDF

    Multimedia

    Get PDF
    The nowadays ubiquitous and effortless digital data capture and processing capabilities offered by the majority of devices, lead to an unprecedented penetration of multimedia content in our everyday life. To make the most of this phenomenon, the rapidly increasing volume and usage of digitised content requires constant re-evaluation and adaptation of multimedia methodologies, in order to meet the relentless change of requirements from both the user and system perspectives. Advances in Multimedia provides readers with an overview of the ever-growing field of multimedia by bringing together various research studies and surveys from different subfields that point out such important aspects. Some of the main topics that this book deals with include: multimedia management in peer-to-peer structures & wireless networks, security characteristics in multimedia, semantic gap bridging for multimedia content and novel multimedia applications

    Practical Lightweight Security: Physical Unclonable Functions and the Internet of Things

    Get PDF
    In this work, we examine whether Physical Unclonable Functions (PUFs) can act as lightweight security mechanisms for practical applications in the context of the Internet of Things (IoT). In order to do so, we first discuss what PUFs are, and note that memory-based PUFs seem to fit the best to the framework of the IoT. Then, we consider a number of relevant memory-based PUF designs and their properties, and evaluate their ability to provide security in nominal and adverse conditions. Finally, we present and assess a number of practical PUF-based security protocols for IoT devices and networks, in order to confirm that memory-based PUFs can indeed constitute adequate security mechanisms for the IoT, in a practical and lightweight fashion. More specifically, we first consider what may constitute a PUF, and we redefine PUFs as inanimate physical objects whose characteristics can be exploited in order to obtain a behaviour similar to a highly distinguishable (i.e., “(quite) unique”) mathematical function. We note that PUFs share many characteristics with biometrics, with the main difference being that PUFs are based on the characteristics of inanimate objects, while biometrics are based on the characteristics of humans and other living creatures. We also note that it cannot really be proven that PUFs are unique per instance, but they should be considered to be so, insofar as (human) biometrics are also considered to be unique per instance. We, then, proceed to discuss the role of PUFs as security mechanisms for the IoT, and we determine that memory-based PUFs are particularly suited for this function. We observe that the IoT nowadays consists of heterogeneous devices connected over diverse networks, which include both high-end and resource-constrained devices. Therefore, it is essential that a security solution for the IoT is not only effective, but also highly scalable, flexible, lightweight, and cost-efficient, in order to be considered as practical. To this end, we note that PUFs have been proposed as security mechanisms for the IoT in the related work, but the practicality of the relevant security mechanisms has not been sufficiently studied. We, therefore, examine a number of memory-based PUFs that are implemented using Commercial Off-The-Shelf (COTS) components, and assess their potential to serve as acceptable security mechanisms in the context of the IoT, not only in terms of effectiveness and cost, but also under both nominal and adverse conditions, such as ambient temperature and supply voltage variations, as well as in the presence of (ionising) radiation. In this way, we can determine whether memory-based PUFs are truly suitable to be used in the various application areas of the IoT, which may even involve particularly adverse environments, e.g., in IoT applications involving space modules and operations. Finally, we also explore the potential of memory-based PUFs to serve as adequate security mechanisms for the IoT in practice, by presenting and analysing a number of cryptographic protocols based on these PUFs. In particular, we study how memory-based PUFs can be used for key generation, as well as device identification, and authentication, their role as security mechanisms for current and next-generation IoT devices and networks, and their potential for applications in the space segment of the IoT and in other adverse environments. Additionally, this work also discusses how memory-based PUFs can be utilised for the implementation of lightweight reconfigurable PUFs that allow for advanced security applications. In this way, we are able to confirm that memory-based PUFs can indeed provide flexible, scalable, and efficient security solutions for the IoT, in a practical, lightweight, and inexpensive manner

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine
    corecore