27,422 research outputs found

    Control and structural optimization for maneuvering large spacecraft

    Get PDF
    Presented here are the results of an advanced control design as well as a discussion of the requirements for automating both the structures and control design efforts for maneuvering a large spacecraft. The advanced control application addresses a general three dimensional slewing problem, and is applied to a large geostationary platform. The platform consists of two flexible antennas attached to the ends of a flexible truss. The control strategy involves an open-loop rigid body control profile which is derived from a nonlinear optimal control problem and provides the main control effort. A perturbation feedback control reduces the response due to the flexibility of the structure. Results are shown which demonstrate the usefulness of the approach. Software issues are considered for developing an integrated structures and control design environment

    Yet Another Tutorial of Disturbance Observer: Robust Stabilization and Recovery of Nominal Performance

    Full text link
    This paper presents a tutorial-style review on the recent results about the disturbance observer (DOB) in view of robust stabilization and recovery of the nominal performance. The analysis is based on the case when the bandwidth of Q-filter is large, and it is explained in a pedagogical manner that, even in the presence of plant uncertainties and disturbances, the behavior of real uncertain plant can be made almost similar to that of disturbance-free nominal system both in the transient and in the steady-state. The conventional DOB is interpreted in a new perspective, and its restrictions and extensions are discussed

    Robust and Decentralized Control of Web Winding Systems

    Get PDF
    This research addresses the velocity and tension regulation problems in web handling, including those found in the single element of an accumulator and those in the large-scale system settings. A continuous web winding system is a complex large-scale interconnected dynamics system with numerous tension zones to transport the web while processing it. A major challenge in controlling such systems is the unexpected disturbances that propagate through the system and affect both tension and velocity loops along the way. To solve this problem, a unique active disturbance rejection control (ADRC) strategy is proposed. Simulation results show remarkable disturbance rejection capability of the proposed control scheme in coping with large dynamic variations commonly seen in web winding systems. Another complication in web winding system stems from its large-scale and interconnected dynamics which makes control design difficult. This motivates the research in formulating a novel robust decentralized control strategy. The key idea in the proposed approach is that nonlinearities and interactions between adjunct subsystems are regarded as perturbations, to be estimated by an augmented state observer and rejected in the control loop, therefore making the local control design extremely simple. The proposed decentralized control strategy was implemented on a 3-tension-zone web winding processing line. Simulation results show that the proposed control method leads to much better tension and velocity regulation quality than the existing controller common in industry. Finally, this research tackles the challenging problem of stability analysis. Although ADRC has demonstrated the validity and advantage in many applications, the rigorous stability study has not been fully addressed previously. To this end, stability characterization of ADRC is carried out in this work. The closed-loop system is first reformulated, resulting in a form that allows the application of the well established singular perturbation method. Based on the decom

    Robust and Decentralized Control of Web Winding Systems

    Get PDF
    This research addresses the velocity and tension regulation problems in web handling, including those found in the single element of an accumulator and those in the large-scale system settings. A continuous web winding system is a complex large-scale interconnected dynamics system with numerous tension zones to transport the web while processing it. A major challenge in controlling such systems is the unexpected disturbances that propagate through the system and affect both tension and velocity loops along the way. To solve this problem, a unique active disturbance rejection control (ADRC) strategy is proposed. Simulation results show remarkable disturbance rejection capability of the proposed control scheme in coping with large dynamic variations commonly seen in web winding systems. Another complication in web winding system stems from its large-scale and interconnected dynamics which makes control design difficult. This motivates the research in formulating a novel robust decentralized control strategy. The key idea in the proposed approach is that nonlinearities and interactions between adjunct subsystems are regarded as perturbations, to be estimated by an augmented state observer and rejected in the control loop, therefore making the local control design extremely simple. The proposed decentralized control strategy was implemented on a 3-tension-zone web winding processing line. Simulation results show that the proposed control method leads to much better tension and velocity regulation quality than the existing controller common in industry. Finally, this research tackles the challenging problem of stability analysis. Although ADRC has demonstrated the validity and advantage in many applications, the rigorous stability study has not been fully addressed previously. To this end, stability characterization of ADRC is carried out in this work. The closed-loop system is first reformulated, resulting in a form that allows the application of the well established singular perturbation method. Based on the decom

    Drag-free and attitude control for the GOCE satellite

    Get PDF
    The paper concerns Drag-Free and Attitude Control of the European satellite Gravity field and steady-state Ocean Circulation Explorer (GOCE) during the science phase. Design has followed Embedded Model Control, where a spacecraft/environment discrete-time model becomes the realtime control core and is interfaced to actuators and sensors via tuneable feedback laws. Drag-free control implies cancelling non-gravitational forces and all torques, leaving the satellite to free fall subject only to gravity. In addition, for reasons of science, the spacecraft must be carefully aligned to the local orbital frame, retrieved from range and rate of a Global Positioning System receiver. Accurate drag-free and attitude control requires proportional and low-noise thrusting, which in turn raises the problem of propellant saving. Six-axis drag-free control is driven by accurate acceleration measurements provided by the mission payload. Their angular components must be combined with the star-tracker attitude so as to compensate accelerometer drift. Simulated results are presented and discusse

    Controllers, observers, and applications thereof

    Get PDF
    Controller scaling and parameterization are described. Techniques that can be improved by employing the scaling and parameterization include, but are not limited to, controller design, tuning and optimization. The scaling and parameterization methods described here apply to transfer function based controllers, including PID controllers. The parameterization methods also apply to state feedback and state observer based controllers, as well as linear active disturbance rejection (ADRC) controllers. Parameterization simplifies the use of ADRC. A discrete extended state observer (DESO) and a generalized extended state observer (GESO) are described. They improve the performance of the ESO and therefore ADRC. A tracking control algorithm is also described that improves the performance of the ADRC controller. A general algorithm is described for applying ADRC to multi-input multi-output systems. Several specific applications of the control systems and processes are disclosed

    Asymptotic rejection of sinusoidal disturbances based voltage balance control in back-to-back power converters

    Get PDF
    This paper addresses the imbalance problem of the dc-link capacitor voltages in the three-level diode-clamped back-to-back power converter. In order to cope with it, a mathematical analysis of the capacitor voltage difference dynamics, based on a continuous model of the converter, is first carried out. It leads to an approximated model which contains explicitly several sinusoidal functions of time. In view of this result, the voltage imbalance phenomenon can be addressed as an output regulation problem, considering the sinusoidal functions as exogenous disturbances. Thus, a novel approach to deal with the mentioned problem in the back- to-back converter is presented. Then, the particular features of the disturbances are used to design several controllers. They all follow an asymptotic disturbance rejection approach. In this way, the estimations of the disturbances are used to apply a control law that cancels them while regulating the capacitor voltage balance as well. Finally, the performance of the proposed control laws is evaluated, presenting the simulation results obtained when the different controllers are implemented.MICINN-FEDER DPI2009-0966

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    Design and application of advanced disturbance rejection control for small fixed-wing UAVs

    Get PDF
    Small Unmanned Aerial Vehicles (UAVs) have seen continual growth in both research and commercial applications. Attractive features such as their small size, light weight and low cost are a strong driver of this growth. However, these factors also bring about some drawbacks. The light weight and small size means that small UAVs are far more susceptible to performance degradation from factors such as wind gusts. Due to the generally low cost, available sensors are somewhat limited in both quality and available measurements. For example, it is very unlikely that angle of attack is sensed by a small UAV. These aircraft are usually constructed by the end user, so a tangible amount of variation will exist between different aircraft of the same type. Depending on application, additional variation between flights from factors such as battery placement or additional sensors may exist. This makes the application of optimal model based control methods difficult. Research literature on the topic of small UAV control is very rich in regard to high level control, such as path planning in wind. A common assumption in such literature is the existence of a low level control method which is able to track demanded aircraft attitudes to complete a task. Design of such controllers in the presence of significant wind or modelling errors (factors collectively addressed as lumped disturbances herein) is rarely considered. Disturbance Observer Based Control (DOBC) is a means of improving the robustness of a baseline feedback control scheme in the presence of lumped disturbances. The method allows for the rejection of the influence of unmeasurable disturbances much more quickly than traditional integral control, while also enabling recovery of nominal feedback con- trol performance. The separation principle of DOBC allows for the design of a nominal feedback controller, which does not need to be robust against disturbances. A DOBC augmentation can then be applied to ensure this nominal performance is maintained even in the presence of disturbances. This method offers highly attractive properties for control design, and has seen a large rise in popularity in recent years. Current literature on this subject is very often conducted purely in simulation. Ad- ditionally, very advanced versions of DOBC control are now being researched. To make the method attractive to small UAV operators, it would be beneficial if a simple DOBC design could be used to realise the benefits of this method, as it would be more accessible and applicable by many. This thesis investigates the application of a linear state space disturbance observer to low level flight control of a small UAV, along with developments of the method needed to achieve good performance in flight testing. Had this work been conducted purely in simulation, it is likely many of the difficulties encountered would not have been addressed or discovered. This thesis presents four main contributions. An anti-windup method has been devel- oped which is able to alleviate the effect of control saturation on the disturbance observer dynamics. An observer is designed which explicitly considers actuator dynamics. This development was shown to enable faster observer estimation dynamics, yielding better disturbance rejection performance. During initial flight testing, a significant aeroelastic oscillation mode was discovered. This issue was studied in detail theoretically, with a pro- posed solution developed and applied. The solution was able to fully alleviate the effect in flight. Finally, design and development of an over-actuated DOBC method is presented. A method for design of DOBC for over actuated systems was developed and studied. The majority of results in this thesis are demonstrated with flight test data
    corecore