1,538 research outputs found

    Face recognition based on curvelets, invariant moments features and SVM

    Get PDF
    Recent studies highlighted on face recognition methods. In this paper, a new algorithm is proposed for face recognition by combining Fast Discrete Curvelet Transform (FDCvT) and Invariant Moments with Support vector machine (SVM), which improves rate of face recognition in various situations. The reason of using this approach depends on two things. first, Curvelet transform which is a multi-resolution method, that can efficiently represent image edge discontinuities; Second, the Invariant Moments analysis which is a statistical method that meets with the translation, rotation and scale invariance in the image. Furthermore, SVM is employed to classify the face image based on the extracted features. This process is applied on each of ORL and Yale databases to evaluate the performance of the suggested method. Experimentally, the proposed method results show that our system can compose efficient and reasonable face recognition feature, and obtain useful recognition accuracy, which is able to face and side-face states detection of persons to decrease fault rate of production

    Identification of Gastroenteric Viruses by Electron Microscopy Using Higher Order Spectral Features

    Get PDF
    Background: Many paediatric illnesses are caused by viral agents, for example, acute gastroenteritis. Electron microscopy can provide images of viral particles and can be used to identify the agents. Objectives: The use of electron microscopy as a diagnostic tool is limited by the need for high level of expertise in interpreting these images and the time required. A semi-automated method is proposed in this paper. Study design: The method is based on bispectal features that capture contour and texture information while providing robustness to shift, rotation, changes in size and noise. The magnification or true size of the viral particles need not be known precisely, but if available can be used additionally for improved classification. Viral particles from one or more images are segmented and analyzed to verify whether they belong to a particular class (such as Adenovirus, Rotavirus, etc.) or not. Two experiments were conducted—depending on the populations from which virus particle images were collected for training and testing, respectively. In the first, disjoint subsets from a pooled population of virus particles obtained from several images were used. In the second, separate populations from separate images were used. The performance of the method on viruses of similar size was separately evaluated using Astrovirus, HAV and Poliovirus. A Gaussian Mixture Model was used for the probability density of the features. A threshold on the log-likelihood is varied to study false alarm and false rejection trade-off. Features from many particles and/or likelihoods from independent tests are averaged to yield better performance. Results: An equal error rate (EER) of 2% is obtained for verification of Rotavirus (tested against three other viruses) when features from 15 viral particle images are averaged. It drops further to less than 0.2% when scores from two tests are averaged to make a decision. For verification of Astrovirus (tested against two others of the same size) the EER was less than 2% when 20 particles and two tests were used. Conclusion: Bispectral features and Gaussian mixture modelling of their probability density are shown to be effective in identifying viruses from electron microscope images. With the use of digital imaging in electron microscopes, this method can be fully automated

    Functional declarative language design and predicate calculus: A practical approach

    Get PDF
    corecore