367 research outputs found

    Brain Tumor Segmentation Techniques: A Review

    Get PDF
    Image processing is used widely in solving a variety of problems. The important and complex phase of image processing is image segmentation. This paper provides a brief description on some of the segmentation algorithms specifically on brain tumor MR Images. Later in this paper, simple comparisons are made between the listed algorithms. This work helps in understanding some of the existing brain MR Image segmentation algorithms better

    Spatial information of fuzzy clustering based mean best artificial bee colony algorithm for phantom brain image segmentation

    Get PDF
    Fuzzy c-means algorithm (FCM) is among the most commonly used in the medical image segmentation process. Nevertheless, the traditional FCM clustering approach has been several weaknesses such as noise sensitivity and stuck in local optimum, due to FCM hasn’t able to consider the information of contextual. To solve FCM problems, this paper presented spatial information of fuzzy clustering-based mean best artificial bee colony algorithm, which is called SFCM-MeanABC. This proposed approach is used contextual information in the spatial fuzzy clustering algorithm to reduce sensitivity to noise and its used MeanABC capability of balancing between exploration and exploitation that is explore the positive and negative directions in search space to find the best solutions, which leads to avoiding stuck in a local optimum. The experiments are carried out on two kinds of brain images the Phantom MRI brain image with a different level of noise and simulated image. The performance of the SFCM-MeanABC approach shows promising results compared with SFCM-ABC and other stats of the arts

    A Comparative Study of Classical Clustering Method and Cuckoo Search Approach for Satellite Image Clustering: Application to Water Body Extraction

    Get PDF
    Image clustering is a critical and essential component of image analysis to several fields and could be considered as an optimization problem. Cuckoo Search (CS) algorithm is an optimization algorithm that simulates the aggressive reproduction strategy of some cuckoo species.In this paper, a combination of CS and classical algorithms (KM, FCM, and KHM) is proposed for unsupervised satellite image classification. Comparisons with classical algorithms and also with CS are performed using three cluster validity indices namely DB, XB, and WB on synthetic and real data sets. Experimental results confirm the effectiveness of the proposed approach

    The k-means algorithm: A comprehensive survey and performance evaluation

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. The k-means clustering algorithm is considered one of the most powerful and popular data mining algorithms in the research community. However, despite its popularity, the algorithm has certain limitations, including problems associated with random initialization of the centroids which leads to unexpected convergence. Additionally, such a clustering algorithm requires the number of clusters to be defined beforehand, which is responsible for different cluster shapes and outlier effects. A fundamental problem of the k-means algorithm is its inability to handle various data types. This paper provides a structured and synoptic overview of research conducted on the k-means algorithm to overcome such shortcomings. Variants of the k-means algorithms including their recent developments are discussed, where their effectiveness is investigated based on the experimental analysis of a variety of datasets. The detailed experimental analysis along with a thorough comparison among different k-means clustering algorithms differentiates our work compared to other existing survey papers. Furthermore, it outlines a clear and thorough understanding of the k-means algorithm along with its different research directions

    Multilevel Thresholding for Image Segmentation Using an Improved Electromagnetism Optimization Algorithm

    Get PDF
    Image segmentation is considered one of the most important tasks in image processing, which has several applications in different areas such as; industry agriculture, medicine, etc. In this paper, we develop the electromagnetic optimization (EMO) algorithm based on levy function, EMO-levy, to enhance the EMO performance for determining the optimal multi-level thresholding of image segmentation. In general, EMO simulates the mechanism of attraction and repulsion between charges to develop the individuals of a population. EMO takes random samples from search space within the histogram of image, where, each sample represents each particle in EMO. The quality of each particle is assessed based on Otsu’s or Kapur objective function value. The solutions are updated using EMO operators until determine the optimal objective functions. Finally, this approach produces segmented images with optimal values for the threshold and a few number of iterations. The proposed technique is validated using different standard test images. Experimental results prove the effectiveness and superiority of the proposed algorithm for image segmentation compared with well-known optimization methods

    An approach based on tunicate swarm algorithm to solve partitional clustering problem

    Get PDF
    The tunicate swarm algorithm (TSA) is a newly proposed population-based swarm optimizer for solving global optimization problems. TSA uses best solution in the population in order improve the intensification and diversification of the tunicates. Thus, the possibility of finding a better position for search agents has increased. The aim of the clustering algorithms is to distributed the data instances into some groups according to similar and dissimilar features of instances. Therefore, with a proper clustering algorithm the dataset will be separated to some groups and it’s expected that the similarities of groups will be minimum. In this work, firstly, an approach based on TSA has proposed for solving partitional clustering problem. Then, the TSA is implemented on ten different clustering problems taken from UCI Machine Learning Repository, and the clustering performance of the TSA is compared with the performances of the three well known clustering algorithms such as fuzzy c-means, k-means and k-medoids. The experimental results and comparisons show that the TSA based approach is highly competitive and robust optimizer for solving the partitional clustering problems
    corecore