15,058 research outputs found

    An under-sampling method based on fuzzy logic for large imbalanced dataset

    Full text link
    © 2014 IEEE. Large imbalanced datasets have introduced difficulties to classification problems. They cause a high error rate of the minority class samples and a long training time of the classification model. Therefore, re-sampling and data size reduction have become important steps to pre-process the data. In this paper, a sampling strategy over a large imbalanced dataset is proposed, in which the samples of the larger class are selected based on fuzzy logic. To further reduce the data size, the evolutionary computational method of CHC is employed. The evaluation is done by applying a Support Vector Machine (SVM) to train a classification model from the re-sampled training sets. From experimental results, it can be seen that our proposed method improves both the F-measure and AUC. The complexity of the classification model is also compared. It is found that our proposed method is superior to all other compared methods

    Matrix sketching for supervised classification with imbalanced classes

    Get PDF
    The presence of imbalanced classes is more and more common in practical applications and it is known to heavily compromise the learning process. In this paper we propose a new method aimed at addressing this issue in binary supervised classification. Re-balancing the class sizes has turned out to be a fruitful strategy to overcome this problem. Our proposal performs re-balancing through matrix sketching. Matrix sketching is a recently developed data compression technique that is characterized by the property of preserving most of the linear information that is present in the data. Such property is guaranteed by the Johnson-Lindenstrauss’ Lemma (1984) and allows to embed an n-dimensional space into a reduced one without distorting, within an ϵ-size interval, the distances between any pair of points. We propose to use matrix sketching as an alternative to the standard re-balancing strategies that are based on random under-sampling the majority class or random over-sampling the minority one. We assess the properties of our method when combined with linear discriminant analysis (LDA), classification trees (C4.5) and Support Vector Machines (SVM) on simulated and real data. Results show that sketching can represent a sound alternative to the most widely used rebalancing methods

    A critical assessment of imbalanced class distribution problem: the case of predicting freshmen student attrition

    Get PDF
    Predicting student attrition is an intriguing yet challenging problem for any academic institution. Class-imbalanced data is a common in the field of student retention, mainly because a lot of students register but fewer students drop out. Classification techniques for imbalanced dataset can yield deceivingly high prediction accuracy where the overall predictive accuracy is usually driven by the majority class at the expense of having very poor performance on the crucial minority class. In this study, we compared different data balancing techniques to improve the predictive accuracy in minority class while maintaining satisfactory overall classification performance. Specifically, we tested three balancing techniques—oversampling, under-sampling and synthetic minority over-sampling (SMOTE)—along with four popular classification methods—logistic regression, decision trees, neuron networks and support vector machines. We used a large and feature rich institutional student data (between the years 2005 and 2011) to assess the efficacy of both balancing techniques as well as prediction methods. The results indicated that the support vector machine combined with SMOTE data-balancing technique achieved the best classification performance with a 90.24% overall accuracy on the 10-fold holdout sample. All three data-balancing techniques improved the prediction accuracy for the minority class. Applying sensitivity analyses on developed models, we also identified the most important variables for accurate prediction of student attrition. Application of these models has the potential to accurately predict at-risk students and help reduce student dropout rates
    corecore