2,157 research outputs found

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition

    Full text link
    This paper introduces HeBERT and HebEMO. HeBERT is a Transformer-based model for modern Hebrew text, which relies on a BERT (Bidirectional Encoder Representations for Transformers) architecture. BERT has been shown to outperform alternative architectures in sentiment analysis, and is suggested to be particularly appropriate for MRLs. Analyzing multiple BERT specifications, we find that while model complexity correlates with high performance on language tasks that aim to understand terms in a sentence, a more-parsimonious model better captures the sentiment of entire sentence. Either way, out BERT-based language model outperforms all existing Hebrew alternatives on all common language tasks. HebEMO is a tool that uses HeBERT to detect polarity and extract emotions from Hebrew UGC. HebEMO is trained on a unique Covid-19-related UGC dataset that we collected and annotated for this study. Data collection and annotation followed an active learning procedure that aimed to maximize predictability. We show that HebEMO yields a high F1-score of 0.96 for polarity classification. Emotion detection reaches F1-scores of 0.78-0.97 for various target emotions, with the exception of surprise, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even among English-language models of emotion detection

    Deep Reinforcement Learning and sub-problem decomposition using Hierarchical Architectures in partially observable environments

    Get PDF
    Reinforcement Learning (RL) is based on the Markov Decision Process (MDP) framework, but not all the problems of interest can be modeled with MDPs because some of them have non-markovian temporal dependencies. To handle them, one of the solutions proposed in literature is Hierarchical Reinforcement Learning (HRL). HRL takes inspiration from hierarchical planning in artificial intelligence literature and it is an emerging sub-discipline for RL, in which RL methods are augmented with some kind of prior knowledge about the high-level structure of behavior in order to decompose the underlying problem into simpler sub-problems. The high-level goal of our thesis is to investigate the advantages that a HRL approach may have over a simple RL approach. Thus, we study problems of interest (rarely tackled by mean of RL) like Sentiment Analysis, Rogue and Car Controller, showing how the ability of RL algorithms to solve them in a partially observable environment is affected by using (or not) generic hierarchical architectures based on RL algorithms of the Actor-Critic family. Remarkably, we claim that especially our work in Sentiment Analysis is very innovative for RL, resulting in state-of-the-art performances; as far as the author knows, Reinforcement Learning approach is only rarely applied to the domain of computational linguistic and sentiment analysis. Furthermore, our work on the famous video-game Rogue is probably the first example of Deep RL architecture able to explore Rogue dungeons and fight against its monsters achieving a success rate of more than 75% on the first game level. While our work on Car Controller allowed us to make some interesting considerations on the nature of some components of the policy gradient equation

    Attribute Sentiment Scoring with Online Text Reviews: Accounting for Language Structure and Missing Attributes

    Get PDF
    The authors address two significant challenges in using online text reviews to obtain fine-grained attribute level sentiment ratings. First, they develop a deep learning convolutional-LSTM hybrid model to account for language structure, in contrast to methods that rely on word frequency. The convolutional layer accounts for the spatial structure (adjacent word groups or phrases) and LSTM accounts for the sequential structure of language (sentiment distributed and modified across non-adjacent phrases). Second, they address the problem of missing attributes in text in construct-ing attribute sentiment scores—as reviewers write only about a subset of attributes and remain silent on others. They develop a model-based imputation strategy using a structural model of heterogeneous rating behavior. Using Yelp restaurant review data, they show superior accuracy in converting text to numerical attribute sentiment scores with their model. The structural model finds three reviewer segments with different motivations: status seeking, altruism/want voice, and need to vent/praise. Interestingly, our results show that reviewers write to inform and vent/praise, but not based on attribute importance. Our heterogeneous model-based imputation performs better than other common imputations; and importantly leads to managerially significant corrections in restaurant attribute ratings

    GBG++: A Fast and Stable Granular Ball Generation Method for Classification

    Full text link
    Granular ball computing (GBC), as an efficient, robust, and scalable learning method, has become a popular research topic of granular computing. GBC includes two stages: granular ball generation (GBG) and multi-granularity learning based on the granular ball (GB). However, the stability and efficiency of existing GBG methods need to be further improved due to their strong dependence on kk-means or kk-division. In addition, GB-based classifiers only unilaterally consider the GB's geometric characteristics to construct classification rules, but the GB's quality is ignored. Therefore, in this paper, based on the attention mechanism, a fast and stable GBG (GBG++) method is proposed first. Specifically, the proposed GBG++ method only needs to calculate the distances from the data-driven center to the undivided samples when splitting each GB instead of randomly selecting the center and calculating the distances between it and all samples. Moreover, an outlier detection method is introduced to identify local outliers. Consequently, the GBG++ method can significantly improve effectiveness, robustness, and efficiency while being absolutely stable. Second, considering the influence of the sample size within the GB on the GB's quality, based on the GBG++ method, an improved GB-based kk-nearest neighbors algorithm (GBkkNN++) is presented, which can reduce misclassification at the class boundary. Finally, the experimental results indicate that the proposed method outperforms several existing GB-based classifiers and classical machine learning classifiers on 2424 public benchmark datasets
    corecore