4,318 research outputs found

    Efficient MRF Energy Propagation for Video Segmentation via Bilateral Filters

    Get PDF
    Segmentation of an object from a video is a challenging task in multimedia applications. Depending on the application, automatic or interactive methods are desired; however, regardless of the application type, efficient computation of video object segmentation is crucial for time-critical applications; specifically, mobile and interactive applications require near real-time efficiencies. In this paper, we address the problem of video segmentation from the perspective of efficiency. We initially redefine the problem of video object segmentation as the propagation of MRF energies along the temporal domain. For this purpose, a novel and efficient method is proposed to propagate MRF energies throughout the frames via bilateral filters without using any global texture, color or shape model. Recently presented bi-exponential filter is utilized for efficiency, whereas a novel technique is also developed to dynamically solve graph-cuts for varying, non-lattice graphs in general linear filtering scenario. These improvements are experimented for both automatic and interactive video segmentation scenarios. Moreover, in addition to the efficiency, segmentation quality is also tested both quantitatively and qualitatively. Indeed, for some challenging examples, significant time efficiency is observed without loss of segmentation quality.Comment: Multimedia, IEEE Transactions on (Volume:16, Issue: 5, Aug. 2014

    High-ISO long-exposure image denoising based on quantitative blob characterization

    Get PDF
    Blob detection and image denoising are fundamental, sometimes related tasks in computer vision. In this paper, we present a computational method to quantitatively measure blob characteristics using normalized unilateral second-order Gaussian kernels. This method suppresses non-blob structures while yielding a quantitative measurement of the position, prominence and scale of blobs, which can facilitate the tasks of blob reconstruction and blob reduction. Subsequently, we propose a denoising scheme to address high-ISO long-exposure noise, which sometimes spatially shows a blob appearance, employing a blob reduction procedure as a cheap preprocessing for conventional denoising methods. We apply the proposed denoising methods to real-world noisy images as well as standard images that are corrupted by real noise. The experimental results demonstrate the superiority of the proposed methods over state-of-the-art denoising methods

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit

    Get PDF
    This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current

    Probabilistic ToF and Stereo Data Fusion Based on Mixed Pixel Measurement Models

    Get PDF
    This paper proposes a method for fusing data acquired by a ToF camera and a stereo pair based on a model for depth measurement by ToF cameras which accounts also for depth discontinuity artifacts due to the mixed pixel effect. Such model is exploited within both a ML and a MAP-MRF frameworks for ToF and stereo data fusion. The proposed MAP-MRF framework is characterized by site-dependent range values, a rather important feature since it can be used both to improve the accuracy and to decrease the computational complexity of standard MAP-MRF approaches. This paper, in order to optimize the site dependent global cost function characteristic of the proposed MAP-MRF approach, also introduces an extension to Loopy Belief Propagation which can be used in other contexts. Experimental data validate the proposed ToF measurements model and the effectiveness of the proposed fusion techniques

    Linear Control Theory with an ℋ∞ Optimality Criterion

    Get PDF
    This expository paper sets out the principal results in ℋ∞ control theory in the context of continuous-time linear systems. The focus is on the mathematical theory rather than computational methods

    Adaptive kernel estimation for enhanced filtering and pattern classification of magnetic resonance imaging: novel techniques for evaluating the biomechanics and pathologic conditions of the lumbar spine

    Get PDF
    This dissertation investigates the contribution the lumbar spine musculature has on etiological and pathogenic characteristics of low back pain and lumbar spondylosis. This endeavor necessarily required a two-step process: 1) design of an accurate post-processing method for extracting relevant information via magnetic resonance images and 2) determine pathological trends by elucidating high-dimensional datasets through multivariate pattern classification. The lumbar musculature was initially evaluated by post-processing and segmentation of magnetic resonance (MR) images of the lumbar spine, which characteristically suffer from nonlinear corruption of the signal intensity. This so called intensity inhomogeneity degrades the efficacy of traditional intensity-based segmentation algorithms. Proposed in this dissertation is a solution for filtering individual MR images by extracting a map of the underlying intensity inhomogeneity to adaptively generate local estimates of the kernel’s optimal bandwidth. The adaptive kernel is implemented and tested within the structure of the non-local means filter, but also generalized and extended to the Gaussian and anisotropic diffusion filters. Testing of the proposed filters showed that the adaptive kernel significantly outperformed their non-adaptive counterparts. A variety of performance metrics were utilized to measure either fine feature preservation or accuracy of post-processed segmentation. Based on these metrics the adaptive filters proposed in this dissertation significantly outperformed the non-adaptive versions. Using the proposed filter, the MR data was semi-automatically segmented to delineate between adipose and lean muscle tissues. Two important findings were reached utilizing this data. First, a clear distinction between the musculature of males and females was established that provided 100% accuracy in being able to predict gender. Second, degenerative lumbar spines were accurately predicted at a rate of up to 92% accuracy. These results solidify prior assumptions made regarding sexual dimorphic anatomy and the pathogenic nature of degenerative spine disease
    corecore