108,981 research outputs found

    In situ method for power re-equalization of wavelength pulses inside of OCDMA codes

    Get PDF
    A simple in-situ method to equalize power among individual wavelengths pulses representing two-dimensional wavelength-hopping time-spreading OCDMA code originally generated by a fibre Bragg grating-based OCDMA encoder is presented. Experimental data obtained in a field-based multiuser OCDMA testbed shows that applying this method results in system performance enhancements which was demonstrated by observing improved bit error rate (BER) during the field trials

    Spatially-Coupled LDPC Codes for Decode-and-Forward Relaying of Two Correlated Sources over the BEC

    Get PDF
    We present a decode-and-forward transmission scheme based on spatially-coupled low-density parity-check (SC-LDPC) codes for a network consisting of two (possibly correlated) sources, one relay, and one destination. The links between the nodes are modeled as binary erasure channels. Joint source-channel coding with joint channel decoding is used to exploit the correlation. The relay performs network coding. We derive analytical bounds on the achievable rates for the binary erasure time-division multiple-access relay channel with correlated sources. We then design bilayer SC-LDPC codes and analyze their asymptotic performance for this scenario. We prove analytically that the proposed coding scheme achieves the theoretical limit for symmetric channel conditions and uncorrelated sources. Using density evolution, we furthermore demonstrate that our scheme approaches the theoretical limit also for non-symmetric channel conditions and when the sources are correlated, and we observe the threshold saturation effect that is typical for spatially-coupled systems. Finally, we give simulation results for large block lengths, which validate the DE analysis.Comment: IEEE Transactions on Communications, to appea

    Throughput-based Design for Polar Coded-Modulation

    Full text link
    Typically, forward error correction (FEC) codes are designed based on the minimization of the error rate for a given code rate. However, for applications that incorporate hybrid automatic repeat request (HARQ) protocol and adaptive modulation and coding, the throughput is a more important performance metric than the error rate. Polar codes, a new class of FEC codes with simple rate matching, can be optimized efficiently for maximization of the throughput. In this paper, we aim to design HARQ schemes using multilevel polar coded-modulation (MLPCM). Thus, we first develop a method to determine a set-partitioning based bit-to-symbol mapping for high order QAM constellations. We simplify the LLR estimation of set-partitioned QAM constellations for a multistage decoder, and we introduce a set of algorithms to design throughput-maximizing MLPCM for the successive cancellation decoding (SCD). These codes are specifically useful for non-combining (NC) and Chase-combining (CC) HARQ protocols. Furthermore, since optimized codes for SCD are not optimal for SC list decoders (SCLD), we propose a rate matching algorithm to find the best rate for SCLD while using the polar codes optimized for SCD. The resulting codes provide throughput close to the capacity with low decoding complexity when used with NC or CC HARQ

    Variable Length Space Time Coded Modulation

    No full text
    A Variable Length Space Time Coded Modulation (VL-STCM) scheme capable of simultaneously providing coding, multiplexing and diversity gains is proposed. The scheme advocated achieves its best performance for correlated sources, where the source symbols exhibit a nonuniform probability of occurrence. The source symbols are encoded using an optimal trellis encoder into variablelength modulated signals and mapped to both the spatial and time domains. More explicitly, the proposed VL-STCM arrangement is a jointly designed source coding, channel coding, modulation and spatial diversity/multiplexing scheme. It is shown that the higher the source correlation, the higher the achievable performance gain of the scheme. Furthermore, the performance of the VL-STCM scheme is about 6 dB better than that of the Fixed Length STCM (FL-STCM) benchmarker at a source symbol error ratio of 10?4

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe
    corecore