45,775 research outputs found

    Personalized Cinemagraphs using Semantic Understanding and Collaborative Learning

    Full text link
    Cinemagraphs are a compelling way to convey dynamic aspects of a scene. In these media, dynamic and still elements are juxtaposed to create an artistic and narrative experience. Creating a high-quality, aesthetically pleasing cinemagraph requires isolating objects in a semantically meaningful way and then selecting good start times and looping periods for those objects to minimize visual artifacts (such a tearing). To achieve this, we present a new technique that uses object recognition and semantic segmentation as part of an optimization method to automatically create cinemagraphs from videos that are both visually appealing and semantically meaningful. Given a scene with multiple objects, there are many cinemagraphs one could create. Our method evaluates these multiple candidates and presents the best one, as determined by a model trained to predict human preferences in a collaborative way. We demonstrate the effectiveness of our approach with multiple results and a user study.Comment: To appear in ICCV 2017. Total 17 pages including the supplementary materia

    Context-driven progressive enhancement of mobile web applications: a multicriteria decision-making approach

    Get PDF
    Personal computing has become all about mobile and embedded devices. As a result, the adoption rate of smartphones is rapidly increasing and this trend has set a need for mobile applications to be available at anytime, anywhere and on any device. Despite the obvious advantages of such immersive mobile applications, software developers are increasingly facing the challenges related to device fragmentation. Current application development solutions are insufficiently prepared for handling the enormous variety of software platforms and hardware characteristics covering the mobile eco-system. As a result, maintaining a viable balance between development costs and market coverage has turned out to be a challenging issue when developing mobile applications. This article proposes a context-aware software platform for the development and delivery of self-adaptive mobile applications over the Web. An adaptive application composition approach is introduced, capable of autonomously bypassing context-related fragmentation issues. This goal is achieved by incorporating and validating the concept of fine-grained progressive application enhancements based on a multicriteria decision-making strategy

    Individual Tariffs for Mobile Services: Analysis of Operator Business and Risk Consequences

    Get PDF
    A design approach is offered for individual tariffs for mass customized mobile service products, whereby operators can determine their contract acceptance rules to guarantee with a set probability their minimum profit and risk levels. It uses realistic improvements to earlier reported negotiation algorithms [1], and a full operator operational model including infrastructure and content acquisition. Value at risk and profit are analyzed when a random user has consistent characteristics to a survey group, so that risk and profits are pooled. This analysis is necessary to give the supplier business guarantees to enter individual tariff agreements. A full numerical case is given for a class of mobile service.risks;mobile communication services;Individual tariffs

    Using Grouped Linear Prediction and Accelerated Reinforcement Learning for Online Content Caching

    Full text link
    Proactive caching is an effective way to alleviate peak-hour traffic congestion by prefetching popular contents at the wireless network edge. To maximize the caching efficiency requires the knowledge of content popularity profile, which however is often unavailable in advance. In this paper, we first propose a new linear prediction model, named grouped linear model (GLM) to estimate the future content requests based on historical data. Unlike many existing works that assumed the static content popularity profile, our model can adapt to the temporal variation of the content popularity in practical systems due to the arrival of new contents and dynamics of user preference. Based on the predicted content requests, we then propose a reinforcement learning approach with model-free acceleration (RLMA) for online cache replacement by taking into account both the cache hits and replacement cost. This approach accelerates the learning process in non-stationary environment by generating imaginary samples for Q-value updates. Numerical results based on real-world traces show that the proposed prediction and learning based online caching policy outperform all considered existing schemes.Comment: 6 pages, 4 figures, ICC 2018 worksho

    R-UCB: a Contextual Bandit Algorithm for Risk-Aware Recommender Systems

    Full text link
    Mobile Context-Aware Recommender Systems can be naturally modelled as an exploration/exploitation trade-off (exr/exp) problem, where the system has to choose between maximizing its expected rewards dealing with its current knowledge (exploitation) and learning more about the unknown user's preferences to improve its knowledge (exploration). This problem has been addressed by the reinforcement learning community but they do not consider the risk level of the current user's situation, where it may be dangerous to recommend items the user may not desire in her current situation if the risk level is high. We introduce in this paper an algorithm named R-UCB that considers the risk level of the user's situation to adaptively balance between exr and exp. The detailed analysis of the experimental results reveals several important discoveries in the exr/exp behaviour
    corecore