3,002 research outputs found

    Optimal column layout for hybrid workloads

    Get PDF
    Data-intensive analytical applications need to support both efficient reads and writes. However, what is usually a good data layout for an update-heavy workload, is not well-suited for a read-mostly one and vice versa. Modern analytical data systems rely on columnar layouts and employ delta stores to inject new data and updates. We show that for hybrid workloads we can achieve close to one order of magnitude better performance by tailoring the column layout design to the data and query workload. Our approach navigates the possible design space of the physical layout: it organizes each column’s data by determining the number of partitions, their corresponding sizes and ranges, and the amount of buffer space and how it is allocated. We frame these design decisions as an optimization problem that, given workload knowledge and performance requirements, provides an optimal physical layout for the workload at hand. To evaluate this work, we build an in-memory storage engine, Casper, and we show that it outperforms state-of-the-art data layouts of analytical systems for hybrid workloads. Casper delivers up to 2.32x higher throughput for update-intensive workloads and up to 2.14x higher throughput for hybrid workloads. We further show how to make data layout decisions robust to workload variation by carefully selecting the input of the optimization.http://www.vldb.org/pvldb/vol12/p2393-athanassoulis.pdfPublished versionPublished versio

    Growth of relational model: Interdependence and complementary to big data

    Get PDF
    A database management system is a constant application of science that provides a platform for the creation, movement, and use of voluminous data. The area has witnessed a series of developments and technological advancements from its conventional structured database to the recent buzzword, bigdata. This paper aims to provide a complete model of a relational database that is still being widely used because of its well known ACID properties namely, atomicity, consistency, integrity and durability. Specifically, the objective of this paper is to highlight the adoption of relational model approaches by bigdata techniques. Towards addressing the reason for this in corporation, this paper qualitatively studied the advancements done over a while on the relational data model. First, the variations in the data storage layout are illustrated based on the needs of the application. Second, quick data retrieval techniques like indexing, query processing and concurrency control methods are revealed. The paper provides vital insights to appraise the efficiency of the structured database in the unstructured environment, particularly when both consistency and scalability become an issue in the working of the hybrid transactional and analytical database management system

    Adaptive Merging on Phase Change Memory

    Full text link
    Indexing is a well-known database technique used to facilitate data access and speed up query processing. Nevertheless, the construction and modification of indexes are very expensive. In traditional approaches, all records in the database table are equally covered by the index. It is not effective, since some records may be queried very often and some never. To avoid this problem, adaptive merging has been introduced. The key idea is to create index adaptively and incrementally as a side-product of query processing. As a result, the database table is indexed partially depending on the query workload. This paper faces a problem of adaptive merging for phase change memory (PCM). The most important features of this memory type are: limited write endurance and high write latency. As a consequence, adaptive merging should be investigated from the scratch. We solve this problem in two steps. First, we apply several PCM optimization techniques to the traditional adaptive merging approach. We prove that the proposed method (eAM) outperforms a traditional approach by 60%. After that, we invent the framework for adaptive merging (PAM) and a new PCM-optimized index. It further improves the system performance by 20% for databases where search queries interleave with data modifications

    Adaptive indexing in modern database kernels

    Get PDF
    Physical design represents one of the hardest problems for database management systems. Without proper tuning, systems cannot achieve good performance. Offline indexing creates indexes a priori assuming good workload knowledge and idle time. More recently, online indexing monitors the workload trends and creates or drops indexes online. Adaptive indexing takes another step towards completely automating the tuning process of a database system, by enabling incremental and partial online indexing. The main idea is that physical design changes continuously, adaptively, partially, incrementally and on demand while processing queries as part of the execution operators. As such it brings a plethora of opportunities for rethinking and improving every single corner of database system design. We will analyze the indexing space between offline, online and adaptive indexing through several state of the art indexing techniques, e. g., what-if analysis and soft indexes. We will discuss in detail adaptive indexing techniques such as database cracking, adaptive merging, sideways cracking and various hybrids that try to balance the online tuning overhead with the convergence speed to optimal performance. In addition, we will discuss how various aspects of modern techniques for database architectures, such as vectorization, bulk processing, column-store execution and storage affect adaptive indexing. Finally, we will discuss several open research topics towards fully automomous database kernels

    Transactional support for adaptive indexing

    Get PDF
    Adaptive indexing initializes and optimizes indexes incrementally, as a side effect of query processing. The goal is to achieve the benefits of indexes while hiding or minimizing the costs of index creation. However, index-optimizing side effects seem to turn read-only queries into update transactions that might, for example, create lock contention. This paper studies concurrency contr

    Resilient store: a heuristic-based data format selector for intermediate results

    Get PDF
    The final publication is available at link.springer.comLarge-scale data analysis is an important activity in many organizations that typically requires the deployment of data-intensive workflows. As data is processed these workflows generate large intermediate results, which are typically pipelined from one operator to the following. However, if materialized, these results become reusable, hence, subsequent workflows need not recompute them. There are already many solutions that materialize intermediate results but all of them assume a fixed data format. A fixed format, however, may not be the optimal one for every situation. For example, it is well-known that different data fragmentation strategies (e.g., horizontal and vertical) behave better or worse according to the access patterns of the subsequent operations. In this paper, we present ResilientStore, which assists on selecting the most appropriate data format for materializing intermediate results. Given a workflow and a set of materialization points, it uses rule-based heuristics to choose the best storage data format based on subsequent access patterns.We have implemented ResilientStore for HDFS and three different data formats: SequenceFile, Parquet and Avro. Experimental results show that our solution gives 18% better performance than any solution based on a single fixed format.Peer ReviewedPostprint (author's final draft

    Database architecture evolution: Mammals flourished long before dinosaurs became extinct

    Get PDF
    The holy grail for database architecture research is to find a solution that is Scalable & Speedy, to run on anything from small ARM processors up to globally distributed compute clusters, Stable & Secure, to service a broad user community, Small & Simple, to be comprehensible to a small team of programmers, Self-managing, to let it run out-of-the-box without hassle. In this paper, we provide a trip report on this quest, covering both past experiences, ongoing research on hardware-conscious algorithms, and novel ways towards self-management specifically focused on column store solutions
    corecore