688 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Security Issues in Healthcare Applications Using Wireless Medical Sensor Networks: A Survey

    Get PDF
    Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs

    Non-repudiable authentication and billing architecture for wireless mesh networks

    Get PDF
    Wireless mesh networks (WMNs) are a kind of wireless ad hoc networks that are multi-hop where packets are forwarded from source to destination by intermediate notes as well as routers that form a kind of network infrastructure backbone. We investigate the security of the recently proposed first known secure authentication and billing architecture for WMNs which eliminates the need for bilateral roaming agreements and that for traditional home-foreign domains. We show that this architecture does not securely provide incontestable billing contrary to designer claims and furthermore it does not achieve entity authentication. We then present an enhanced scheme that achieves entity authentication and nonrepudiable billing

    SecureSurgiNET:a framework for ensuring security in telesurgery

    Get PDF
    The notion of surgical robotics is actively being extended to enable telesurgery, where both the surgeon and patient are remotely located and connected via a public network, which leads to many security risks. Being a safety-critical application, it is highly important to make telesurgery robust and secure against active and passive attacks. In this article, we propose the first complete framework, called SecureSurgiNET, for ensuring security in telesurgery environments. SecureSurgiNET is primarily based on a set of well-established protocols to provide a fool-proof telesurgical robotic system. For increasing the efficiency of secured telesurgery environments, the idea of a telesurgical authority is introduced that ensures the integrity, identity management, authentication policy implementation, and postoperative data security. An analysis is provided describing the security and throughput of Advanced Encryption Standard during the intraoperative phase of SecureSurgiNET. Moreover, we have tabulated the possible attacks on SecureSurgiNET along with the devised defensive measures. Finally, we also present a time complexity analysis of the SecureSurgiNET through simulations. © The Author(s) 2019

    SAW: Wristband-Based Authentication for Desktop Computers

    Get PDF
    Token-based proximity authentication methods that authenticate users based on physical proximity are effortless, but lack explicit user intentionality, which may result in accidental logins. For example, a user may get logged in when she is near a computer or just passing by, even if she does not intend to use that computer. Lack of user intentionality in proximity-based methods makes them less suitable for multi-user shared computer environments, despite their desired usability benefits over passwords. \par We present an authentication method for desktops called Seamless Authentication using Wristbands (SAW), which addresses the lack of intentionality limitation of proximity-based methods. SAW uses a low-effort user input step for explicitly conveying user intentionality, while keeping the overall usability of the method better than password-based methods. In SAW, a user wears a wristband that acts as the user\u27s identity token, and to authenticate to a desktop, the user provides a low-effort input by tapping a key on the keyboard multiple times or wiggling the mouse with the wristband hand. This input to the desktop conveys that someone wishes to log in to the desktop, and SAW verifies the user who wishes to log in by confirming the user\u27s proximity and correlating the received keyboard or mouse inputs with the user\u27s wrist movement, as measured by the wristband. In our feasibility user study (n=17), SAW proved quick to authenticate (within two seconds), with a low false-negative rate of 2.5% and worst-case false-positive rate of 1.8%. In our user perception study (n=16), a majority of the participants rated it as more usable than passwords

    Teleoperation of passivity-based model reference robust control over the internet

    Get PDF
    This dissertation offers a survey of a known theoretical approach and novel experimental results in establishing a live communication medium through the internet to host a virtual communication environment for use in Passivity-Based Model Reference Robust Control systems with delays. The controller which is used as a carrier to support a robust communication between input-to-state stability is designed as a control strategy that passively compensates for position errors that arise during contact tasks and strives to achieve delay-independent stability for controlling of aircrafts or other mobile objects. Furthermore the controller is used for nonlinear systems, coordination of multiple agents, bilateral teleoperation, and collision avoidance thus maintaining a communication link with an upper bound of constant delay is crucial for robustness and stability of the overall system. For utilizing such framework an elucidation can be formulated by preparing site survey for analyzing not only the geographical distances separating the nodes in which the teleoperation will occur but also the communication parameters that define the virtual topography that the data will travel through. This survey will first define the feasibility of the overall operation since the teleoperation will be used to sustain a delay based controller over the internet thus obtaining a hypothetical upper bound for the delay via site survey is crucial not only for the communication system but also the delay is required for the design of the passivity-based model reference robust control. Following delay calculation and measurement via site survey, bandwidth tests for unidirectional and bidirectional communication is inspected to ensure that the speed is viable to maintain a real-time connection. Furthermore from obtaining the results it becomes crucial to measure the consistency of the delay throughout a sampled period to guarantee that the upper bound is not breached at any point within the communication to jeopardize the robustness of the controller. Following delay analysis a geographical and topological overview of the communication is also briefly examined via a trace-route to understand the underlying nodes and their contribution to the delay and round-trip consistency. To accommodate the communication channel for the controller the input and output data from both nodes need to be encapsulated within a transmission control protocol via a multithreaded design of a robust program within the C language. The program will construct a multithreaded client-server relationship in which the control data is transmitted. For added stability and higher level of security the channel is then encapsulated via an internet protocol security by utilizing a protocol suite for protecting the communication by authentication and encrypting each packet of the session using negotiation of cryptographic keys during each session

    Privacy, security, and trust issues in smart environments

    Get PDF
    Recent advances in networking, handheld computing and sensor technologies have driven forward research towards the realisation of Mark Weiser's dream of calm and ubiquitous computing (variously called pervasive computing, ambient computing, active spaces, the disappearing computer or context-aware computing). In turn, this has led to the emergence of smart environments as one significant facet of research in this domain. A smart environment, or space, is a region of the real world that is extensively equipped with sensors, actuators and computing components [1]. In effect the smart space becomes a part of a larger information system: with all actions within the space potentially affecting the underlying computer applications, which may themselves affect the space through the actuators. Such smart environments have tremendous potential within many application areas to improve the utility of a space. Consider the potential offered by a smart environment that prolongs the time an elderly or infirm person can live an independent life or the potential offered by a smart environment that supports vicarious learning

    NetChain: A Blockchain-Enabled Privacy-Preserving Multi-Domain Network Slice Orchestration Architecture

    Get PDF
    Multi-domain networking slice orchestration is an essential technology for the programmable and cloud-native 5G network. However, existing research solutions are either based on the impractical assumption that operators will reveal all the private network information or time-consuming secure multi-party computation which is only applicable to limited computation scenarios. To provide agile and privacy-preserving end-to-end network slice orchestration services, this paper proposes NetChain, a multi-domain network slice orchestration architecture based on blockchain and trusted execution environment. Correspondingly, we design a novel consensus algorithm CoNet to ensure the strong security, scalability, and information consistency of NetChain. In addition, a bilateral evaluation mechanism based on game theory is proposed to guarantee fairness and Quality of Experience by suppressing the malicious behaviors during multi-domain network slice orchestration. Finally, the prototype of NetChain is implemented and evaluated on the Microsoft Azure Cloud with confidential computing. Experiment results show that NetChain has good performance and security under the premise of privacy-preserving

    EAP-CRA for WiMAX, WLAN and 4G LTE Interoperability

    Get PDF
    Today we are moving into a “post-PC” world! Not many people sit in front of custom built PCs to do their businesses any more. Hand held devices such as iPod Touch, iPhone, Galaxy S3, iPad, Galaxy Tab, Airbook, Notepad etc. are bringing in a new paradigm as to how people use and communicate information. These devices can be thought as a theoretical “black-box”. They are for people who want to use it without wanting to know how they work. Such devices have third generation user interfaces – multi touch, physics and gestures (MPG). They need updates, but the user is not worried of how and where the files are stored. When a new application is installed, the user sees the icon and starts using it. The user is not interested in, what files were installed or where it was installed – there is no file management. The post-PC approach to dealing with software is that it’s discovered on an app store, downloaded with a single touch and deleted with another touch. Updates all come at once from the app store and it all happens behind the scene with minimal user involvement. All this is happening and adopted rapidly because people are able to do a number of things without being restricted to one place. They can download apps, watch movies, listen to news, browse the web etc. while on the move.Griffith Sciences, School of Information and Communication TechnologyFull Tex
    corecore