44 research outputs found

    Removing bias against membrane proteins in interaction networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cellular interaction networks can be used to analyze the effects on cell signaling and other functional consequences of perturbations to cellular physiology. Thus, several methods have been used to reconstitute interaction networks from multiple published datasets. However, the structure and performance of these networks depends on both the quality and the unbiased nature of the original data. Due to the inherent bias against membrane proteins in protein-protein interaction (PPI) data, interaction networks can be compromised particularly if they are to be used in conjunction with drug screening efforts, since most drug-targets are membrane proteins.</p> <p>Results</p> <p>To overcome the experimental bias against PPIs involving membrane-associated proteins we used a probabilistic approach based on a hypergeometric distribution followed by logistic regression to simultaneously optimize the weights of different sources of interaction data. The resulting less biased genome-scale network constructed for the budding yeast <it>Saccharomyces cerevisiae </it>revealed that the starvation pathway is a distinct subnetwork of autophagy and retrieved a more integrated network of unfolded protein response genes. We also observed that the centrality-lethality rule depends on the content of membrane proteins in networks.</p> <p>Conclusions</p> <p>We show here that the bias against membrane proteins can and should be corrected in order to have a better representation of the interactions and topological properties of protein interaction networks.</p

    Bridging topological and functional information in protein interaction networks by short loops profiling

    Get PDF
    Protein-protein interaction networks (PPINs) have been employed to identify potential novel interconnections between proteins as well as crucial cellular functions. In this study we identify fundamental principles of PPIN topologies by analysing network motifs of short loops, which are small cyclic interactions of between 3 and 6 proteins. We compared 30 PPINs with corresponding randomised null models and examined the occurrence of common biological functions in loops extracted from a cross-validated high-confidence dataset of 622 human protein complexes. We demonstrate that loops are an intrinsic feature of PPINs and that specific cell functions are predominantly performed by loops of different lengths. Topologically, we find that loops are strongly related to the accuracy of PPINs and define a core of interactions with high resilience. The identification of this core and the analysis of loop composition are promising tools to assess PPIN quality and to uncover possible biases from experimental detection methods. More than 96% of loops share at least one biological function, with enrichment of cellular functions related to mRNA metabolic processing and the cell cycle. Our analyses suggest that these motifs can be used in the design of targeted experiments for functional phenotype detection.This research was supported by the Biotechnology and Biological Sciences Research Council (BB/H018409/1 to AP, ACCC and FF, and BB/J016284/1 to NSBT) and by the Leukaemia & Lymphoma Research (to NSBT and FF). SSC is funded by a Leukaemia & Lymphoma Research Gordon Piller PhD Studentship

    A probabilistic model for the evaluation of module extraction algorithms in complex biological networks

    Get PDF
    This thesis presents CiGRAM, a model of complex networks ith known modular structure that is capable of generating realistic graph topology. Much of the recent focus on module detection has been geared towards developing new algorithms capable of detecting biologically significant clusters. However, evaluating clusterings detected by different methods shows that there is little topological agreement or consensus in terms of meta-data despite most methods discovering modules with significant ontology. In this thesis an approach to modelling complex networks with ground-truth modular structure is presented. This approach is capable of generating graphs with heterogeneous degree distributions, high clustering coefficients and assortative degree correlations observed in real data but often ignored in existing benchmarks. Moreover, the model for modular structure concludes that non-modular random graphs are indistinguishable from modules. This model can be tuned to fit many empirical biological and non-biological datasets through fitting target graph summary statistics. The ground-truth structure allows the evaluation of module extraction algorithms in a domain specific context. Furthermore, it was found that degree assortativity appears to negatively impact several module extraction methods such as the popular infomap and modularity maximisation methods. Results presented disagree with other benchmark models highlighting the potential for future research into improving existing methods in ways that challenge assumptions about the detectability of modules

    A probabilistic model for the evaluation of module extraction algorithms in complex biological networks

    Get PDF
    This thesis presents CiGRAM, a model of complex networks ith known modular structure that is capable of generating realistic graph topology. Much of the recent focus on module detection has been geared towards developing new algorithms capable of detecting biologically significant clusters. However, evaluating clusterings detected by different methods shows that there is little topological agreement or consensus in terms of meta-data despite most methods discovering modules with significant ontology. In this thesis an approach to modelling complex networks with ground-truth modular structure is presented. This approach is capable of generating graphs with heterogeneous degree distributions, high clustering coefficients and assortative degree correlations observed in real data but often ignored in existing benchmarks. Moreover, the model for modular structure concludes that non-modular random graphs are indistinguishable from modules. This model can be tuned to fit many empirical biological and non-biological datasets through fitting target graph summary statistics. The ground-truth structure allows the evaluation of module extraction algorithms in a domain specific context. Furthermore, it was found that degree assortativity appears to negatively impact several module extraction methods such as the popular infomap and modularity maximisation methods. Results presented disagree with other benchmark models highlighting the potential for future research into improving existing methods in ways that challenge assumptions about the detectability of modules

    Computational analysis of protein interaction networks for infectious diseases

    Get PDF
    Infectious diseases caused by pathogens, including viruses, bacteria and parasites, pose a serious threat to human health worldwide. Frequent changes in the pattern of infection mechanisms and the emergence of multidrug resistant strains among pathogens have weakened the current treatment regimen. This necessitates the development of new therapeutic interventions to prevent and control such diseases. To cater to the need, analysis of protein interaction networks (PINs) has gained importance as one of the promising strategies. The present review aims to discuss various computational approaches to analyse the PINs in context to infectious diseases. Topology and modularity analysis of the network with their biological relevance, and the scenario till date about host-pathogen and intra-pathogenic protein interaction studies were delineated. This would provide useful insights to the research community thereby enabling them to design novel biomedicine against such infectious diseases

    Computation in Complex Networks

    Get PDF
    Complex networks are one of the most challenging research focuses of disciplines, including physics, mathematics, biology, medicine, engineering, and computer science, among others. The interest in complex networks is increasingly growing, due to their ability to model several daily life systems, such as technology networks, the Internet, and communication, chemical, neural, social, political and financial networks. The Special Issue “Computation in Complex Networks" of Entropy offers a multidisciplinary view on how some complex systems behave, providing a collection of original and high-quality papers within the research fields of: • Community detection • Complex network modelling • Complex network analysis • Node classification • Information spreading and control • Network robustness • Social networks • Network medicin

    lecture notes updated 2/11

    Get PDF

    Reconstructing networks

    Get PDF
    Complex networks datasets often come with the problem of missing information: interactions data that have not been measured or discovered, may be affected by errors, or are simply hidden because of privacy issues. This Element provides an overview of the ideas, methods and techniques to deal with this problem and that together define the field of network reconstruction. Given the extent of the subject, the authors focus on the inference methods rooted in statistical physics and information theory. The discussion is organized according to the different scales of the reconstruction task, that is, whether the goal is to reconstruct the macroscopic structure of the network, to infer its mesoscale properties, or to predict the individual microscopic connections

    Reconstructing networks

    Get PDF
    Complex networks datasets often come with the problem of missing information: interactions data that have not been measured or discovered, may be affected by errors, or are simply hidden because of privacy issues. This Element provides an overview of the ideas, methods and techniques to deal with this problem and that together define the field of network reconstruction. Given the extent of the subject, we shall focus on the inference methods rooted in statistical physics and information theory. The discussion will be organized according to the different scales of the reconstruction task, that is, whether the goal is to reconstruct the macroscopic structure of the network, to infer its mesoscale properties, or to predict the individual microscopic connections.Comment: 107 pages, 25 figure
    corecore