27,703 research outputs found

    Interpretable 3D Human Action Analysis with Temporal Convolutional Networks

    Full text link
    The discriminative power of modern deep learning models for 3D human action recognition is growing ever so potent. In conjunction with the recent resurgence of 3D human action representation with 3D skeletons, the quality and the pace of recent progress have been significant. However, the inner workings of state-of-the-art learning based methods in 3D human action recognition still remain mostly black-box. In this work, we propose to use a new class of models known as Temporal Convolutional Neural Networks (TCN) for 3D human action recognition. Compared to popular LSTM-based Recurrent Neural Network models, given interpretable input such as 3D skeletons, TCN provides us a way to explicitly learn readily interpretable spatio-temporal representations for 3D human action recognition. We provide our strategy in re-designing the TCN with interpretability in mind and how such characteristics of the model is leveraged to construct a powerful 3D activity recognition method. Through this work, we wish to take a step towards a spatio-temporal model that is easier to understand, explain and interpret. The resulting model, Res-TCN, achieves state-of-the-art results on the largest 3D human action recognition dataset, NTU-RGBD.Comment: 8 pages, 5 figures, BNMW CVPR 2017 Submissio

    Single Input Single Head CNN-GRU-LSTM Architecture for Recognition of Human Activities

    Get PDF
    Due to its applications for the betterment of human life, human activity recognition has attracted more researchers in the recent past. Anticipation of intension behind the motion and behaviour recognition are intensive applications for research inside human activity recognition. Gyroscope, accelerometer, and magnetometer sensors are heavily used to obtain the data in time series for every timestep. The selection of temporal features is required for the successful recognition of human motion primitives. Different data pre-processing and feature extraction techniques were used in most past approaches with the constraint of sufficient domain knowledge. These approaches are heavily dependent on the quality of handcrafted features and are also time-consuming and not generalized. In this paper, a single head deep neural network-based approach with the combination of a convolutional neural network, Gated recurrent unit, and Long Short Term memory is proposed. The raw data from wearable sensors are used with minimum pre-processing steps and without the involvement of any feature extraction method. 93.48 % and 98.51% accuracy are obtained on UCI-HAR and WISDM datasets. This single-head deep neural network-based model shows higher classification performance over other architectures under deep neural networks

    Human activity recognition by using convolutional neural network

    Get PDF
    In recent years, many researchers have studied the HAR (Human Activity Recognition) system. HAR using smart home sensor is based on computing in smart environment, and intelligent surveillance system conducts intensive research on peripheral support life. The previous system studied in some of the activities is a fixed motion and the methodology is less accurate. In this paper, vision-based studies using thermal imaging cameras improve the accuracy of motion recognition in intelligent surveillance systems. We use one of the deep learning architectures widely used in image recognition systems called Convolutional Neural Networks (CNN). Therefore, we use CNN and thermal cameras to provide accuracy and many features through the proposed method
    corecore