261,426 research outputs found

    Doubly Robust Inference when Combining Probability and Non-probability Samples with High-dimensional Data

    Get PDF
    Non-probability samples become increasingly popular in survey statistics but may suffer from selection biases that limit the generalizability of results to the target population. We consider integrating a non-probability sample with a probability sample which provides high-dimensional representative covariate information of the target population. We propose a two-step approach for variable selection and finite population inference. In the first step, we use penalized estimating equations with folded-concave penalties to select important variables for the sampling score of selection into the non-probability sample and the outcome model. We show that the penalized estimating equation approach enjoys the selection consistency property for general probability samples. The major technical hurdle is due to the possible dependence of the sample under the finite population framework. To overcome this challenge, we construct martingales which enable us to apply Bernstein concentration inequality for martingales. In the second step, we focus on a doubly robust estimator of the finite population mean and re-estimate the nuisance model parameters by minimizing the asymptotic squared bias of the doubly robust estimator. This estimating strategy mitigates the possible first-step selection error and renders the doubly robust estimator root-n consistent if either the sampling probability or the outcome model is correctly specified

    Marginal integration for nonparametric causal inference

    Full text link
    We consider the problem of inferring the total causal effect of a single variable intervention on a (response) variable of interest. We propose a certain marginal integration regression technique for a very general class of potentially nonlinear structural equation models (SEMs) with known structure, or at least known superset of adjustment variables: we call the procedure S-mint regression. We easily derive that it achieves the convergence rate as for nonparametric regression: for example, single variable intervention effects can be estimated with convergence rate n2/5n^{-2/5} assuming smoothness with twice differentiable functions. Our result can also be seen as a major robustness property with respect to model misspecification which goes much beyond the notion of double robustness. Furthermore, when the structure of the SEM is not known, we can estimate (the equivalence class of) the directed acyclic graph corresponding to the SEM, and then proceed by using S-mint based on these estimates. We empirically compare the S-mint regression method with more classical approaches and argue that the former is indeed more robust, more reliable and substantially simpler.Comment: 40 pages, 14 figure

    A New Distribution-Free Concept for Representing, Comparing, and Propagating Uncertainty in Dynamical Systems with Kernel Probabilistic Programming

    Full text link
    This work presents the concept of kernel mean embedding and kernel probabilistic programming in the context of stochastic systems. We propose formulations to represent, compare, and propagate uncertainties for fairly general stochastic dynamics in a distribution-free manner. The new tools enjoy sound theory rooted in functional analysis and wide applicability as demonstrated in distinct numerical examples. The implication of this new concept is a new mode of thinking about the statistical nature of uncertainty in dynamical systems
    corecore