143,889 research outputs found

    Near Optimal Neural Network-Based Output Feedback Control of Affine Nonlinear Discrete-Time Systems

    Get PDF
    In this paper, a novel online reinforcement learning neural network (NN)-based optimal output feedback controller, referred to as adaptive critic controller, is proposed for affine nonlinear discrete-time systems, to deliver a desired tracking performance. The adaptive critic design consist of three entities, an observer to estimate the system states, an action network that produces optimal control input and a critic that evaluates the performance of the action network. The critic is termed adaptive as it adapts itself to output the optimal cost-to-go function which is based on the standard Bellman equation. By using the Lyapunov approach, the uniformly ultimate boundedness (UUB) of the estimation and tracking errors and weight estimates is demonstrated. The effectiveness of the controller is evaluated for the task of nanomanipulation in a simulation environment

    Intelligent methods for complex systems control engineering

    Get PDF
    This thesis proposes an intelligent multiple-controller framework for complex systems that incorporates a fuzzy logic based switching and tuning supervisor along with a neural network based generalized learning model (GLM). The framework is designed for adaptive control of both Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) complex systems. The proposed methodology provides the designer with an automated choice of using either: a conventional Proportional-Integral-Derivative (PID) controller, or a PID structure based (simultaneous) Pole and Zero Placement controller. The switching decisions between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using the fuzzy logic based supervisor operating at the highest level of the system. The fuzzy supervisor is also employed to tune the parameters of the multiple-controller online in order to achieve the desired system performance. The GLM for modelling complex systems assumes that the plant is represented by an equivalent model consisting of a linear time-varying sub-model plus a learning nonlinear sub-model based on Radial Basis Function (RBF) neural network. The proposed control design brings together the dominant advantages of PID controllers (such as simplicity in structure and implementation) and the desirable attributes of Pole and Zero Placement controllers (such as stable set-point tracking and ease of parameters’ tuning). Simulation experiments using real-world nonlinear SISO and MIMO plant models, including realistic nonlinear vehicle models, demonstrate the effectiveness of the intelligent multiple-controller with respect to tracking set-point changes, achieve desired speed of response, prevent system output overshooting and maintain minimum variance input and output signals, whilst penalising excessive control actions

    Utility Driven Sampled Data Control Under Imperfect Information

    Get PDF
    Computer based control systems, which are ubiquitous today, are essentially sampled data control systems. In the traditional time-triggered control systems, the sampling period is conservatively chosen, based on a worst case analysis. However, in many control systems, such as those implemented on embedded computers or over a network, parsimonious sampling and computation is helpful. In this context, state/data based aperiodic utility driven sampled data control systems are a promising alternative. This dissertation is concerned with the design of utility driven event-triggers in certain classes of problems where the information available to the triggering mechanisms is imperfect. In the first part, the problem of utility driven event-triggering under partial state information is considered - specifically in the context of (i) decentralized sensing and (ii) dynamic output feedback control. In the case of full state feedback, albeit with decentralized sensing, methods are developed for designing local and asynchronous event-triggers for asymptotic stabilization of an equilibrium point of a general nonlinear system. In the special case of Linear Time Invariant (LTI) systems, the developed method also holds for dynamic output feedback control, which extends naturally to control over Sensor-Controller-Actuator Networks (SCAN), wherein even the controller is decentralized. The second direction that is pursued in this dissertation is that of parsimonious utility driven sampling not only in time but also in space. A methodology of co-designing an event-trigger and a quantizer of the sampled data controller is developed. Effectively, the proposed methodology provides a discrete-event controller for asymptotic stabilization of an equilibrium point of a general continuous-time nonlinear system. In the last part, a method is proposed for designing utility driven event-triggers for the problem of trajectory tracking in general nonlinear systems, where the source of imperfect information is the exogenous reference inputs. Then, specifically in the context of robotic manipulators we develop utility driven sampled data implementation of an adaptive controller for trajectory tracking, wherein imperfect knowledge of system parameters is an added complication
    • …
    corecore