234,304 research outputs found

    Towards the development of agent-based organizations through MDD

    Full text link
    Electronic version of an article published as International Journal on Artificial Intelligence Tools, 22, 2, 2013, DOI 10.1142/S0218213013500024 © World Scientific Publishing Company http://www.worldscientific.com/worldscinet/ijaitVirtual Organizations are a mechanism where agents can demonstrate their social skills since they can work in a cooperative and collaborative way. Nonetheless, the development of organizations using Multi-Agent Systems (MAS) requires extensive experience in different methodologies and platforms. Model-Driven Development (MDD) is a technique for generating application code that is developed from basic models and meta-models using a variety of automatic transformations. This paper presents an approach to develop and deploy organization-oriented Multi-Agent Systems using a model-driven approach. Based on this idea, we introduce a relatively generic agent-based meta-model for a Virtual Organization, which was created by a comprehensive analysis of the organization-oriented methodologies used in MAS. Following the MDD approach, the concepts and relationships obtained were mapped into two different platforms available for MAS development, allowing the validation of our proposal. In this way, the resultant approach can generate Virtual Organization deployments from unified meta-models, facilitating the development process of agent-based software from the user point of view.This work was partially supported by TIN2009-13839-C03-01 and PROMETEO/2008/051 projects of the Spanish government and CONSOLIDER-INGENIO 2010 under grant CSD2007-00022.Agüero, J.; Carrascosa Casamayor, C.; Rebollo Pedruelo, M.; Julian Inglada, VJ. (2013). Towards the development of agent-based organizations through MDD. International Journal on Artificial Intelligence Tools. 22(2):1-34. https://doi.org/10.1142/S0218213013500024S134222Argente, E., Julian, V., & Botti, V. (2006). Multi-Agent System Development Based on Organizations. Electronic Notes in Theoretical Computer Science, 150(3), 55-71. doi:10.1016/j.entcs.2006.03.005Bézivin, J. (2005). On the unification power of models. Software & Systems Modeling, 4(2), 171-188. doi:10.1007/s10270-005-0079-0Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos: An Agent-Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Systems, 8(3), 203-236. doi:10.1023/b:agnt.0000018806.20944.efFoster, I., Kesselman, C., & Tuecke, S. (2001). The Anatomy of the Grid: Enabling Scalable Virtual Organizations. The International Journal of High Performance Computing Applications, 15(3), 200-222. doi:10.1177/109434200101500302Hahn, C., Madrigal-Mora, C., & Fischer, K. (2008). A platform-independent metamodel for multiagent systems. Autonomous Agents and Multi-Agent Systems, 18(2), 239-266. doi:10.1007/s10458-008-9042-0HORLING, B., & LESSER, V. (2004). A survey of multi-agent organizational paradigms. The Knowledge Engineering Review, 19(4), 281-316. doi:10.1017/s0269888905000317Huhns, M. N., & Singh, M. P. (2005). Service-oriented computing: key concepts and principles. IEEE Internet Computing, 9(1), 75-81. doi:10.1109/mic.2005.21Huhns, M. N., Singh, M. P., Burstein, M., Decker, K., Durfee, E., Finin, T., … Zavala, L. (2005). Research Directions for Service-Oriented Multiagent Systems. IEEE Internet Computing, 9(6), 65-70. doi:10.1109/mic.2005.132Kolp, M., Giorgini, P., & Mylopoulos, J. (2006). Multi-Agent Architectures as Organizational Structures. Autonomous Agents and Multi-Agent Systems, 13(1), 3-25. doi:10.1007/s10458-006-5717-6OHTANI, T., CASE, S., AZARMI, N., & THINT, M. (2002). AN INTELLIGENT SYSTEM FOR MANAGING AND UTILIZING INFORMATION RESOURCES OVER THE INTERNET. International Journal on Artificial Intelligence Tools, 11(01), 117-138. doi:10.1142/s0218213002000800Omicini, A., Ricci, A., & Viroli, M. (2005). RBAC for Organisation and Security in an Agent Coordination Infrastructure. Electronic Notes in Theoretical Computer Science, 128(5), 65-85. doi:10.1016/j.entcs.2004.11.045Papazoglou, M. P., & Georgakopoulos, D. (2003). Introduction. Communications of the ACM, 46(10), 24. doi:10.1145/944217.944233Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-Oriented Computing: State of the Art and Research Challenges. Computer, 40(11), 38-45. doi:10.1109/mc.2007.400Selic, B. (2003). The pragmatics of model-driven development. IEEE Software, 20(5), 19-25. doi:10.1109/ms.2003.1231146SKARMEAS, N. P., & CLARK, K. L. (2002). COMPONENT BASED AGENT CONSTRUCTION. International Journal on Artificial Intelligence Tools, 11(01), 139-163. doi:10.1142/s0218213002000812Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2003). Developing multiagent systems. ACM Transactions on Software Engineering and Methodology, 12(3), 317-370. doi:10.1145/958961.95896

    Considerations about quality in model-driven engineering

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11219-016-9350-6The virtue of quality is not itself a subject; it depends on a subject. In the software engineering field, quality means good software products that meet customer expectations, constraints, and requirements. Despite the numerous approaches, methods, descriptive models, and tools, that have been developed, a level of consensus has been reached by software practitioners. However, in the model-driven engineering (MDE) field, which has emerged from software engineering paradigms, quality continues to be a great challenge since the subject is not fully defined. The use of models alone is not enough to manage all of the quality issues at the modeling language level. In this work, we present the current state and some relevant considerations regarding quality in MDE, by identifying current categories in quality conception and by highlighting quality issues in real applications of the model-driven initiatives. We identified 16 categories in the definition of quality in MDE. From this identification, by applying an adaptive sampling approach, we discovered the five most influential authors for the works that propose definitions of quality. These include (in order): the OMG standards (e.g., MDA, UML, MOF, OCL, SysML), the ISO standards for software quality models (e.g., 9126 and 25,000), Krogstie, Lindland, and Moody. We also discovered families of works about quality, i.e., works that belong to the same author or topic. Seventy-three works were found with evidence of the mismatch between the academic/research field of quality evaluation of modeling languages and actual MDE practice in industry. We demonstrate that this field does not currently solve quality issues reported in industrial scenarios. The evidence of the mismatch was grouped in eight categories, four for academic/research evidence and four for industrial reports. These categories were detected based on the scope proposed in each one of the academic/research works and from the questions and issues raised by real practitioners. We then proposed a scenario to illustrate quality issues in a real information system project in which multiple modeling languages were used. For the evaluation of the quality of this MDE scenario, we chose one of the most cited and influential quality frameworks; it was detected from the information obtained in the identification of the categories about quality definition for MDE. We demonstrated that the selected framework falls short in addressing the quality issues. Finally, based on the findings, we derive eight challenges for quality evaluation in MDE projects that current quality initiatives do not address sufficiently.F.G, would like to thank COLCIENCIAS (Colombia) for funding this work through the Colciencias Grant call 512-2010. This work has been supported by the Gene-ralitat Valenciana Project IDEO (PROMETEOII/2014/039), the European Commission FP7 Project CaaS (611351), and ERDF structural funds.Giraldo-Velásquez, FD.; España Cubillo, S.; Pastor López, O.; Giraldo, WJ. (2016). Considerations about quality in model-driven engineering. Software Quality Journal. 1-66. https://doi.org/10.1007/s11219-016-9350-6S166(1985). Iso information processing—documentation symbols and conventions for data, program and system flowcharts, program network charts and system resources charts. ISO 5807:1985(E) (pp. 1–25).(2011). Iso/iec/ieee systems and software engineering – architecture description. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000) (pp. 1–46).Abran, A., Moore, J.W., Bourque, P., Dupuis, R., & Tripp, L.L. (2013). Guide to the Software Engineering Body of Knowledge (SWEBOK) version 3 public review. IEEE. ISO Technical Report ISO/IEC TR 19759.Agner, L.T.W., Soares, I.W., Stadzisz, P.C., & Simão, J.M. (2013). A brazilian survey on {UML} and model-driven practices for embedded software development. Journal of Systems and Software, 86(4), 997–1005. {SI} : Software Engineering in Brazil: Retrospective and Prospective Views.Amstel, M.F.V. (2010). The right tool for the right job: assessing model transformation quality. pages 69–74. Affiliation: Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, Netherlands. Cited By (since 1996):1.Aranda, J., Damian, D., & Borici, A. (2012). Transition to model-driven engineering: what is revolutionary, what remains the same?. In Proceedings of the 15th international conference on model driven engineering languages and systems, MODELS’12 (pp. 692–708). Berlin, Heidelberg: Springer.Arendt, T., & Taentzer, G. (2013). A tool environment for quality assurance based on the eclipse modeling framework. Automated Software Engineering, 20(2), 141–184.Atkinson, C., Bunse, C., & Wüst, J. (2003). Driving component-based software development through quality modelling, volume 2693. Cited By (since 1996):3.Baker, P., Loh, S., & Weil, F. (2005). Model-driven engineering in a large industrial context—motorola case study. In Briand, L., & Williams, C. (Eds.) Model Driven Engineering Languages and Systems, volume 3713 of Lecture Notes in Computer Science (pp. 476–491). Berlin, Heidelberg: Springer.Barišić, A., Amaral, V., Goulão, M., & Barroca, B. (2011). Quality in use of domain-specific languages: a case study. In Proceedings of the 3rd ACM SIGPLAN workshop on evaluation and usability of programming languages and tools, PLATEAU ’11 (pp. 65–72). New York: ACM.Becker, J., Bergener, P., Breuker, D., & Rackers, M. (2010). Evaluating the expressiveness of domain specific modeling languages using the bunge-wand-weber ontology. In 2010 43rd Hawaii international conference on system sciences (HICSS) (pp. 1–10).Bertrand Portier, L.A. (2009). Model driven development misperceptions and challenges.Bézivin, J., & Kurtev, I. (2005). Model-based technology integration with the technical space concept. In Proceedings of the Metainformatics Symposium: Springer.Brambilla, M. (2016). How mature is of model-driven engineering as an engineering discipline @ONLINE.Brambilla, M., & Fraternali, P. (2014). Large-scale model-driven engineering of web user interaction: The webml and webratio experience. Science of Computer Programming, 89 Part B(0), 71 – 87. Special issue on Success Stories in Model Driven Engineering.Brown, A. (2009). Simple and practical model driven architecture (mda) @ONLINE.Bruel, J.-M., Combemale, B., Ober, I., & Raynal, H. (2015). Mde in practice for computational science. Procedia Computer Science, 51, 660–669.Budgen, D., Burn, A.J., Brereton, O.P., Kitchenham, B.A., & Pretorius, R. (2011). Empirical evidence about the uml: a systematic literature review. Software: Practice and Experience, 41(4), 363–392.Burden, H., Heldal, R., & Whittle, J. (2014). Comparing and contrasting model-driven engineering at three large companies. In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM ’14 (pp. 14:1–14:10). New York: ACM.Cabot, J. Has mda been abandoned (by the omg)?Cabot, J. (2009). Modeling will be commonplace in three years time @ONLINE.Cachero, C., Poels, G., Calero, C., & Marhuenda, Y. (2007). Towards a Quality-Aware Engineering Process for the Development of Web Applications. Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/462, Ghent University, Faculty of Economics and Business Administration.Challenger, M., Kardas, G., & Tekinerdogan, B. (2015). A systematic approach to evaluating domain-specific modeling language environments for multi-agent systems. Software Quality Journal, 1–41.Chaudron, M.V., Heijstek, W., & Nugroho, A. (2012). How effective is uml modeling? Software & Systems Modeling, 11(4), 571–580. J2: Softw Syst Model.Chenouard, R., Granvilliers, L., & Soto, R. (2008). Model-driven constraint programming. pages 236–246. Affiliation: CNRS, LINA, Universit de Nantes, France; Affiliation: Pontificia Universidad Catlica de, Valparaiso, Chile. Cited By (since 1996):8.Clark, T., & Muller, P.-A. (2012). Exploiting model driven technology: a tale of two startups. Software and Systems Modeling, 11(4), 481–493.Corneliussen, L. (2008). What do you think of model-driven software development?Costal, D., Gómez, C., & Guizzardi, G. (2011). Formal semantics and ontological analysis for understanding subsetting, specialization and redefinition of associations in uml. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6998 LNCS:189–203. cited By (since 1996)3.Cruz-Lemus, J.A., Maes, A., Género, M., Poels, G., & Piattini, M. (2010). The impact of structural complexity on the understandability of uml statechart diagrams. Information Sciences, 180(11), 2209–2220. Cited By (since 1996):14.Cuadrado, J.S., Izquierdo, J.L.C., & Molina, J.G. (2014). Applying model-driven engineering in small software enterprises. Science of Computer Programming, 89 Part B(0), 176 – 198. Special issue on Success Stories in Model Driven Engineering.Da Silva, A.R. (2015). Model-driven engineering: a survey supported by the unified conceptual model. Computer Languages Systems and Structures, 43, 139–155.Da Silva Teixeira, D.G.M., Quirino, G.K., Gailly, F., De Almeida Falbo, R., Guizzardi, G., & Perini Barcellos, M. (2016). PoN-S: a Systematic Approach for Applying the Physics of Notation (PoN), (pp. 432–447). Cham: Springer International Publishing.Davies, I., Green, P., Rosemann, M., Indulska, M., & Gallo, S. (2006). How do practitioners use conceptual modeling in practice? Data and Knowledge Engineering, 58(3), 358 – 380. Including the special issue : {ER} 2004ER 2004.Davies, J., Milward, D., Wang, C.-W., & Welch, J. (2015). Formal model-driven engineering of critical information systems. Science of Computer Programming, 103(0), 88 – 113. Selected papers from the First International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2012).De Oca, I.M.-M., Snoeck, M., Reijers, H.A., & Rodríguez-Morffi, A. (2015). A systematic literature review of studies on business process modeling quality. Information and Software Technology, 58, 187–205.DenHaan, J. (2009). 8 reasons why model driven development is dangerous @ONLINE.DenHaan, J. (2010). Model driven engineering vs the commando pattern @ONLINE.DenHaan, J. (2011a). Why aren’t we all doing model driven development yet @ONLINE.DenHaan, J. (2011b). Why there is no future model driven development @ONLINE.Di Ruscio, D., Iovino, L., & Pierantonio, A. (2013). Managing the coupled evolution of metamodels and textual concrete syntax specifications. cited By (since 1996)0.Dijkman, R.M., Dumas, M., & Ouyang, C. (2008). Semantics and analysis of business process models in {BPMN}. Information and Software Technology, 50(12), 1281–1294.Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., Ramos, I., & Fernández, L. (2011). A framework for the quality evaluation of mdwe methodologies and information technology infrastructures. International Journal of Human Capital and Information Technology Professionals, 2(4), 11–22.Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., & Torres, A.H. (2010). A quality model in a quality evaluation framework for mdwe methodologies. pages 495–506. Affiliation: Departamento de Lenguajes y Sistemas Informíticos, University of Seville, Seville, Spain., Cited By (since 1996):1.Dubray, J.-J. (2011). Why did mde miss the boat?.Escalona, M.J., Gutiérrez, J.J., Pérez-Pérez, M., Molina, A., Domínguez-Mayo, E., & Domínguez-Mayo, F.J. (2011). Measuring the Quality of Model-Driven Projects with NDT-Quality, (pp. 307–317). New York: Springer.Espinilla, M., Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., Ross, M., & Staples, G. (2011). A Method Based on AHP to Define the Quality Model of QuEF (Vol. 123, pp. 685–694). Berlin, Heidelberg: Springer.Fabra, J., Castro, V.D., Álvarez, P., & Marcos, E. (2012). Automatic execution of business process models: exploiting the benefits of model-driven engineering approaches. Journal of Systems and Software, 85(3), 607–625. Novel approaches in the design and implementation of systems/software architecture.Falkenberg, E.D., Hesse, W., Lindgreen, P., Nilsson, B.E., Oei, J.L.H., Rolland, C., Stamper, R.K., Assche, F.J.M.V., Verrijn-Stuart, A.A., & Voss, K. (1996). Frisco: a framework of information system concepts. Technical report, The IFIP WG 8. 1 Task Group FRISCO.Fettke, P., Houy, C., Vella, A.-L., & Loos, P. (2012). Towards the Reconstruction and Evaluation of Conceptual Model Quality Discourses – Methodical Framework and Application in the Context of Model Understandability, volume 113 of Lecture Notes in Business Information Processing, chapter 28, pages 406–421, Springer, Berlin, Heidelberg.Finnie, S. (2015). Modeling community: Are we missing something?Fournier, C. (2008). Is uml [email protected], R., & Rumpe, B. (2007). Model-driven development of complex software: a research roadmap. In Future of Software Engineering, 2007, FOSE ’07 (pp. 37–54).Gallego, M., Giraldo, F.D., & Hitpass, B. (2015). Adapting the pbec-otss software selection approach for bpm suites: an application case. In 2015 34th International Conference of the Chilean Computer Science Society (SCCC) (pp. 1–10).Galvão, I., & Goknil, A. (2007). Survey of traceability approaches in model-driven engineering. cited By (since 1996)22.Giraldo, F., España, S., Giraldo, W., & Pastor, O. (2015). Modelling language quality evaluation in model-driven information systems engineering: a roadmap. In 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS) (pp. 64–69).Giraldo, F., España, S., & Pastor, O. (2014). Analysing the concept of quality in model-driven engineering literature: a systematic review. In 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS) (pp. 1–12).Giraldo, F.D., España, S., & Pastor, O. (2016). Evidences of the mismatch between industry and academy on modelling language quality evaluation. arXiv: 1606.02025 .González, C., & Cabot, J. (2014). Formal verification of static software models in mde: a systematic review. Information and Software Technology, 56(8), 821–838. cited By (since 1996)0.González, C.A., Büttner, F., Clarisó, R., & Cabot, J. (2012). Emftocsp: a tool for the lightweight verification of emf models. pages 44–50. Affiliation: cole des Mines de Nantes, INRIA, LINA, Nantes, France; Affiliation: Universitat Oberta de Catalunya, Barcelona, Spain. Cited By (since 1996):1.Gorschek, T., Tempero, E., & Angelis, L. (2014). On the use of software design models in software development practice: an empirical investigation. Journal of Systems and Software, 95(0), 176– 193.Goulão, M., Amaral, V., & Mernik, M. (2016). Quality in model-driven engineering: a tertiary study. Software Quality Journal, 1–33.Grobshtein, Y., & Dori, D. (2011). Generating sysml views from an opm model: design and evaluation. Systems Engineering, 14(3), 327–340.Haan, J.d. (2008). 8 reasons why model-driven approaches (will) fail.Harel, D., & Rumpe, B. (2000). Modeling languages: Syntax, semantics and all that stuff, part i: The basic stuff, Israel. Technical report Jerusalem Israel.Harel, D., & Rumpe, B. (2004). Meaningful modeling: what’s the semantics of semantics? Computer, 37(10), 64–72.Hebig, R., & Bendraou, R. (2014). On the need to study the impact of model driven engineering on software processes. In Proceedings of the 2014 International Conference on Software and System Process, ICSSP 2014 (pp. 164–168). New York: ACM.Heidari, F., & Loucopoulos, P. (2014). Quality evaluation framework (qef): modeling and evaluating quality of business processes. International Journal of Accounting Information Systems, 15(3), 193–223. Business Process Modeling.Heymans, P., Schobbens, P.Y., Trigaux, J.C., Bontemps, Y., Matulevicius, R., & Classen, A. (2008). Evaluating formal properties of feature diagram languages. Software, IET, 2(3), 281–302. ID 2.Hindawi, M., Morel, L., Aubry, R., & Sourrouille, J.-L. (2009). Description and Implementation of a UML Style Guide (Vol. 5421, pp. 291–302). Berlin: Springer.Hoang, D. (2012). Current limitations of mdd and its implications @ONLINE.Hodges, W. (2013). Model theory Zalta, E.N. (Ed.) The Stanford Encyclopedia of Philosophy. Fall 2013 edition.Hutchinson, J., Rouncefield, M., & Whittle, J. (2011a). Model-driven engineering practices in industry. In Proceedings of the 33rd International Conference on Software Engineering, ICSE’11 (pp. 633–642). New York: ACM.Hutchinson, J., Whittle, J., & Rouncefield, M. (2014). Model-driven engineering practices in industry: social, organizational and managerial factors that lead to success or failure. Science of Computer Programming, 89 Part B(0), 144–161. Special issue on Success Stories in Model Driven Engineering.Hutchinson, J., Whittle, J., Rouncefield, M., & Kristoffersen, S. (2011b). Empirical assessment of mde in industry. In Proceedings of the 33rd International Conference on Software Engineering, ICSE’11 (pp. 471–480). New York: ACM.Igarza, I.M.H., Boada, D.H.G., & Valdés, A.P. (2012). Una introducción al desarrollo de software dirigido por modelos. Serie Científica, 5(3).ISO/IEC (2001). ISO/IEC 9126. Software engineering—Product quality. ISO/IEC.Izurieta, C., Rojas, G., & Griffith, I. (2015). Preemptive management of model driven technical debt for improving software quality. In Proceedings of the 11th International ACM SIGSOFT Conference on Quality of Software Architectures, QoSA’15 (pp. 31–36). New York: ACM.Jalali, S., & Wohlin, C. (2012). Systematic literature studies: Database searches vs. backward snowballing. In Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM’12 (pp. 29–38). New York: ACM.Kahraman, G., & Bilgen, S. (2013). A framework for qualitative assessment of domain-specific languages. Software & Systems Modeling, 1–22.Kessentini, M., Langer, P., & Wimmer, M. (2013). Searching models, modeling search: On the synergies of sbse and mde (pp. 51–54).Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. Technical Report EBSE 2007-001, Keele University and Durham University Joint Report.Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., & Rosenberg, J. (2002). Preliminary guidelines for empirical research in software engineering. IEEE Transactions on Software Engineering, 28(8), 721–734.Klinke, M. (2008). Do you use mda/mdd/mdsd, any kind of model-driven approach? Will it be the future?Köhnlein, J. (2013). Eclipse diagram editors from a user’s perspective.Kolovos, D.S., Paige, R.F., & Polack, F.A. (2008). The grand challenge of scalability for model driven engineering. In Models in Software Engineering (pp. 48–53): Springer.Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S., De Lara, J., Ráth, I., Varró, D., Tisi, M., & Cabot, J. (2013). A research roadmap towards achieving scalability in model driven engineering. In Proceedings of the Workshop on Scalability in Model Driven Engineering, BigMDE’13 (pp. 2:1–2:10). New York: ACM.Krill, P. (2016). Uml to be ejected from microsoft visual studio (infoworld).Krogstie, J. (2012a). Model-based development and evolution of information systems: a quality approach, Springer Publishing Company, Incorporated.Krogstie, J. (2012b). Quality of modelling languages, (pp. 249–280). London: Springer.Krogstie, J. (2012c). Quality of models, (pp. 205–247). London: Springer.Krogstie, J. (2012d). Specialisations of SEQUAL, (pp. 281–326). London: Springer.Krogstie, J., Lindland, O.I., & Sindre, G. (1995). Defining quality aspects for conceptual models. In Proceedings of the IFIP International Working Conference on Information System Concepts: Towards a Consolidation of Views (pp. 216–231). London: Chapman & Hall, Ltd.Kruchten, P. (2000). The rational unified process: an introduction, 2nd edn. Boston: Addison-Wesley Longman Publishing Co., Inc.Kruchten, P., Nord, R., & Ozkaya, I. (2012). Technical debt: from metaphor to theory and practice. Software, IEEE, 29(6), 18–21.Kulkarni, V., Reddy, S., & Rajbhoj, A. (2010). Scaling up model driven engineering – experience and lessons learnt. In Petriu, D., Rouquette, N., & Haugen, y. (Eds.) Model Driven Engineering Languages and Systems, volume 6395 of Lecture Notes in Computer Science (pp. 331–345). Berlin, Heidelberg: Springer.Laguna, M.A., & Marqués, J.M. (2010). Uml support for designing software product lines: the package merge mechanism, 16(17), 2313–2332.Lange, C. (2007a). Model size matters. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4364 LNCS:211–216. cited By (since 1996)1.Lange, C., & Chaudron, M. (2005). Managing Model Quality in UML-Based Software Development. In 13th IEEE International Workshop on Technology and Engineering Practice, 2005 (pp. 7–16).Lange, C., Chaudron, M.R.V., Muskens, J., Somers, L.J., & Dortmans, H.M. (2003). An empirical investigation in quantifying inconsistency and incompleteness of uml designs. In Incompleteness of UML Designs, Proceedings Workshop on Consistency Problems in UML-based Software Development, 6th International Conference on Unified Modeling Language, UML, 2003.Lange, C., DuBois, B., Chaudron, M., & Demeyer, S. (2006). An experimental investigation of uml modeling conventions. In Nierstrasz, O., Whittle, J., Harel, D., & Reggio, G. (Eds.) Model Driven Engineering Languages and Systems, volume 4199 of Lecture Notes in Computer Science (pp. 27–41). Berlin, Heidelberg: Springer.Lange, C.F.J., & Chaudron, M.R.V. (2006). Effe

    Evaluating how agent methodologies support the specification of the normative environment through the development process

    Full text link
    [EN] Due to the increase in collaborative work and the decentralization of processes in many domains, there is an expanding demand for large-scale, flexible and adaptive software systems to support the interactions of people and institutions distributed in heterogeneous environments. Commonly, these software applications should follow specific regulations meaning the actors using them are bound by rights, duties and restrictions. Since this normative environment determines the final design of the software system, it should be considered as an important issue during the design of the system. Some agent-oriented software engineering methodologies deal with the development of normative systems (systems that have a normative environment) by integrating the analysis of the normative environment of a system in the development process. This paper analyses to what extent these methodologies support the analysis and formalisation of the normative environment and highlights some open issues of the topic.This work is partially supported by the PROMETEOII/2013/019, TIN2012-36586-C03-01, FP7-29493, TIN2011-27652-C03-00, CSD2007-00022 projects, and the CASES project within the 7th European Community Framework Program under the grant agreement No 294931.Garcia Marques, ME.; Miles, S.; Luck, M.; Giret Boggino, AS. (2014). Evaluating how agent methodologies support the specification of the normative environment through the development process. Autonomous Agents and Multi-Agent Systems. 1-20. https://doi.org/10.1007/s10458-014-9275-zS120Cossentino, M., Hilaire, V., Molesini, A., & Seidita, V. (Eds.). (2014). Handbook on agent-oriented design processes (Vol. VIII, 569 p. 508 illus.). Berlin: Springer.Akbari, O. (2010). A survey of agent-oriented software engineering paradigm: Towards its industrial acceptance. Journal of Computer Engineering Research, 1, 14–28.Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., & Rebollo, M. (2011). An abstract architecture for virtual organizations: The THOMAS approach. Knowledge and Information Systems, 29(2), 379–403.Argente, E., Botti, V., & Julian, V. (2009). GORMAS: An organizational-oriented methodological guideline for open MAS. In Proceedings of AOSE’09 (pp. 440–449).Argente, E., Botti, V., & Julian, V. (2009). Organizational-oriented methodological guidelines for designing virtual organizations. In Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living. Lecture Notes in Computer Science (Vol. 5518, pp. 154–162).Boella, G., Pigozzi, G., & van der Torre, L. (2009). Normative systems in computer science—Ten guidelines for normative multiagent systems. In G. Boella, P. Noriega, G. Pigozzi, & H. Verhagen (Eds.), Normative multi-agent systems, number 09121 in Dagstuhl seminar proceedings.Boella, G., Torre, L., & Verhagen, H. (2006). Introduction to normative multiagent systems. Computational and Mathematical Organization Theory, 12(2–3), 71–79.Bogdanovych, A., Esteva, M., Simoff, S., Sierra, C., & Berger, H. (2008). A methodology for developing multiagent systems as 3d electronic institutions. In M. Luck & L. Padgham (Eds.), Agent-Oriented Software Engineering VIII (Vol. 4951, pp. 103–117). Lecture Notes in Computer Science. Berlin: Springer.Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Ossowski, S., Sichman, J., & Vazquez-Salceda, J. (2006). Coordination, organizations, institutions and norms in multi-agent systems. LNCS (LNAI) (Vol. 3913).Bordini, R. H., Fisher, M., Visser, W., & Wooldridge, M. (2006). Verifying multi-agent programs by model checking. In Autonomous agents and multi-agent systems (Vol. 12, pp. 239–256). Hingham, MA: Kluwer Academic Publishers.Botti, V., Garrido, A., Giret, A., & Noriega, P. (2011). The role of MAS as a decision support tool in a water-rights market. In Post-proceedings workshops AAMAS2011 (Vol. 7068, pp. 35–49). Berlin: Springer.Breaux, T. (2009). Exercising due diligence in legal requirements acquisition: A tool-supported, frame-based approach. In Proceedings of the IEEE international requirements engineering conference (pp. 225–230).Breaux, T. D., & Baumer, D. L. (2011). Legally reasonable security requirements: A 10-year ftc retrospective. Computers and Security, 30(4), 178–193.Breaux, T. D., Vail, M. W., & Anton, A. I. (2006). Towards regulatory compliance: Extracting rights and obligations to align requirements with regulations. In Proceedings of the 14th IEEE international requirements engineering conference, RE ’06 (pp. 46–55). Washington, DC: IEEE Computer Society.Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos: An agent-oriented software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3), 203–236.Cardoso, H. L., & Oliveira, E. (2008). A contract model for electronic institutions. In COIN’07: Proceedings of the 2007 international conference on Coordination, organizations, institutions, and norms in agent systems III (pp. 27–40).Castor, A., Pinto, R. C., Silva, C. T. L. L., & Castro, J. (2004). Towards requirement traceability in tropos. In WER (pp. 189–200).Chopra, A., Dalpiaz, F., Giorgini, P., & Mylopoulos, J. (2009). Modeling and reasoning about service-oriented applications via goals and commitments. ICST conference on digital business.Cliffe, O., Vos, M., & Padget, J. (2006). Specifying and analysing agent-based social institutions using answer set programming. In O. Boissier, J. Padget, V. Dignum, G. Lindemann, E. Matson, S. Ossowski, J. Sichman, & J. Vázquez-Salceda (Eds.), Coordination, organizations, institutions, and norms in multi-agent systems. Lecture Notes in Computer Science (Vol. 3913, pp. 99–113). Springer. Berlin.Criado, N., Argente, E., Garrido, A., Gimeno, J. A., Igual, F., Botti, V., Noriega, P., & Giret, A. (2011). Norm enforceability in Electronic Institutions? In Coordination, organizations, institutions, and norms in agent systems VI (Vol. 6541, pp. 250–267). Springer.Dellarocas, C., & Klein, M. (2001). Contractual agent societies. In R. Conte & C. Dellarocas (Eds.), Social order in multiagent systems (Vol. 2, pp. 113–133)., Multiagent Systems, Artificial Societies, and Simulated Organizations New York: Springer.DeLoach, S. A. (2008). Developing a multiagent conference management system using the o-mase process framework. In Proceedings of the international conference on agent-oriented software engineering VIII (pp. 168–181).DeLoach, S. A., & Garcia-Ojeda, J. C. (2010). O-mase; a customisable approach to designing and building complex, adaptive multi-agent systems. International Journal of Agent-Oriented Software Engineering, 4(3), 244–280.DeLoach, S. A., Padgham, L., Perini, A., Susi, A., & Thangarajah, J. (2009). Using three aose toolkits to develop a sample design. International Journal Agent-Oriented Software Engineering, 3, 416–476.Dignum, F., Dignum, V., Thangarajah, J., Padgham, L., & Winikoff, M. (2007). Open agent systems? Eighth international workshop on agent oriented software engineering (AOSE) in AAMAS07.Dignum, V. (2003). A model for organizational interaction:based on agents, founded in logic. PhD thesis, Utrecht University.Dignum, V., Meyer, J., Dignum, F., & Weigand, H. (2003). Formal specification of interaction in agent societies. Formal approaches to agent-based systems (Vol. 2699).Dignum, V., Vazquez-Salceda, J., & Dignum, F. (2005). Omni: Introducing social structure, norms and ontologies into agent organizations. In R. Bordini, M. Dastani, J. Dix, & A. Seghrouchni (Eds.)Programming multi-agent systems. Lecture Notes in Computer Science (Vol. 3346, pp. 181–198). Berlin: Springer.d’Inverno, M., Luck, M., Noriega, P., Rodriguez-Aguilar, J., & Sierra, C. (2012). Communicating open systems, 186, 38–94.Elsenbroich, C., & Gilbert, N. (2014). Agent-based modelling. In Modelling norms (pp. 65–84). Dordrecht: Springer.Esteva, M., Rosell, B., Rodriguez, J. A., & Arcos, J. L. (2004). AMELI: An agent-based middleware for electronic institutions. In AAMAS04 (pp. 236–243).Fenech, S., Pace, G. J., & Schneider, G. (2009). Automatic conflict detection on contracts. In Proceedings of the 6th international colloquium on theoretical aspects of computing, ICTAC ’09 (pp. 200–214).Garbay, C., Badeig, F., & Caelen, J. (2012). Normative multi-agent approach to support collaborative work in distributed tangible environments. In Proceedings of the ACM 2012 conference on computer supported cooperative work companion, CSCW ’12 (pp. 83–86). New York, NY: ACM.Garcia, E., Giret, A., & Botti, V. (2011). Regulated open multi-agent systems based on contracts. In Information Systems Development (pp. 243–255).Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Staa, T. V., & Delaney, B. (2012). An analysis of agent-oriented engineering of e-health systems. In 13th international eorkshop on sgent-oriented software engineering (AOSE-AAMAS).Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Staa, T. V., and Delaney, B. (2013). Analysing the Suitability of Multiagent Methodologies for e-Health Systems. In Agent-Oriented Software Engineering XIII, volume 7852, pages 134–150. Springer-Verlag.Garrido, A., Giret, A., Botti, V., & Noriega, P. (2013). mWater, a case study for modeling virtual markets. In New perspectives on agreement technologies (Vol. Law, Gover, pp. 563–579). Springer.Gteau, B., Boissier, O., & Khadraoui, D. (2006). Multi-agent-based support for electronic contracting in virtual enterprises. IFAC Symposium on Information Control Problems in Manufacturing (INCOM), 150(3), 73–91.Hollander, C. D., & Wu, A. S. (2011). The current state of normative agent-based systems. Journal of Artificial Societies and Social Simulation, 14(2), 6.Hsieh, F.-S. (2005). Automated negotiation based on contract net and petri net. In E-commerce and web technologies. Lecture Notes in Computer Science (Vol. 3590, pp. 148–157).Kollingbaum, M., Jureta, I. J., Vasconcelos, W., & Sycara, K. (2008). Automated requirements-driven definition of norms for the regulation of behavior in multi-agent systems. In Proceedings of the AISB 2008 workshop on behaviour regulation in multi-agent systems, Aberdeen, Scotland, U.K., April 2008.Li, T., Balke, T., Vos, M., Satoh, K., & Padget, J. (2013). Detecting conflicts in legal systems. In Y. Motomura, A. Butler, & D. Bekki (Eds.), New Frontiers in Artificial Intelligence (Vol. 7856, pp. 174–189)., Lecture Notes in Computer Science Berlin Heidelberg: Springer.Lomuscio, A., Qu, H., & Solanki, M. (2010) Towards verifying contract regulated service composition. Journal of Autonomous Agents and Multi-Agent Systems (pp. 1–29).Lopez, F., Luck, M., & d’Inverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory, 12, 227–250.Lpez, F. y, Luck, M., & dInverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory, 12(2–3), 227–250.Mader, P., & Egyed, A. (2012). Assessing the effect of requirements traceability for software maintenance. In 28th IEEE International Conference on Software Maintenance (ICSM) (pp. 171–180), Sept 2012.Mao, X., & Yu, E. (2005). Organizational and social concepts in agent oriented software engineering. In AOSE IV. Lecture Notes in Artificial Intelligence (Vol. 3382, pp. 184–202).Meyer, J.-J. C., & Wieringa, R. J. (Eds.). (1993). Deontic logic in computer science: Normative system specification. Chichester, UK: Wiley.Okouya, D., & Dignum, V. (2008). Operetta: A prototype tool for the design, analysis and development of multi-agent organizations (demo paper). In AAMAS (pp. 1667–1678).Malone, T. W., Smith J. B., & Olson, G. M. (2001). Coordination theory and collaboration technology. Mahwah, NJ: Lawrence Erlbaum Associates.Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., & Miles, S. (2009). Towards a formalisation of electronic contracting environments. COIN (pp. 156–171).Osman, N., Robertson, D., & Walton, C. (2006). Run-time model checking of interaction and deontic models for multi-agent systems. In AAMAS ’06: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems (pp. 238–240). New York, NY: ACM.Pace, G., Prisacariu, C., & Schneider, G. (2007). Model checking contracts a case study. In Automated technology for verification and analysis. Lecture Notes in Computer Science (Vol. 4762, pp. 82–97).Rotolo, A., & van der Torre, L. (2011). Rules, agents and norms: Guidelines for rule-based normative multi-agent systems. RuleML Europe, 6826, 52–66.Saeki, M., & Kaiya, H. (2008). Supporting the elicitation of requirements compliant with regulations. In CAiSE ’08 (pp. 228–242).Siena, A., Mylopoulos, J., Perini, A., & Susi, A. (2009). Designing law-compliant software requirements. In Proceedings of the 28th international conference on conceptual modeling, ER ’09 (pp. 472–486).Singh, M. P. Commitments in multiagent systems: Some history, some confusions, some controversies, some prospects.Solaiman, E., Molina-Jimenez, C., & Shrivastav, S. (2003). Model checking correctness properties of electronic contracts. In Service-oriented computing—ICSOC 2003. Lecture Notes in Computer Science (Vol. 2910, pp. 303–318). Berlin: Springer.Telang, P. R., & Singh, M. P. (2009). Conceptual modeling: Foundations and applications. Enhancing tropos with commitments (pp. 417–435).Vázquez-Salceda, J., Confalonieri, R., Gomez, I., Storms, P., Nick Kuijpers, S. P., & Alvarez, S. (2009). Modelling contractually-bounded interactions in the car insurance domain. DIGIBIZ 2009.Viganò, F., & Colombetti, M. (2007). Symbolic model checking of institutions. In ICEC (pp. 35–44).Walton, C. D. (2007). Verifiable agent dialogues. Journal of Applied Logic, 5(2):197–213, Logic-Based Agent Verification.Winkler, S., & Pilgrim, J. (2010). A survey of traceability in requirements engineering and model-driven development. Software and Systems Modeling (SoSyM), 9(4), 529–565.Wooldridge, M., Fisher, M., Huget, M., & Parsons, S. (2002). Model checking multi-agent systems with mable. In AAMAS02 (pp. 952–959). ACM

    To Develop a Database Management Tool for Multi-Agent Simulation Platform

    Get PDF
    Depuis peu, la Modélisation et Simulation par Agents (ABMs) est passée d'une approche dirigée par les modèles à une approche dirigée par les données (Data Driven Approach, DDA). Cette tendance vers l’utilisation des données dans la simulation vise à appliquer les données collectées par les systèmes d’observation à la simulation (Edmonds and Moss, 2005; Hassan, 2009). Dans la DDA, les données empiriques collectées sur les systèmes cibles sont utilisées non seulement pour la simulation des modèles mais aussi pour l’initialisation, la calibration et l’évaluation des résultats issus des modèles de simulation, par exemple, le système d’estimation et de gestion des ressources hydrauliques du bassin Adour-Garonne Français (Gaudou et al., 2013) et l’invasion des rizières du delta du Mékong au Vietnam par les cicadelles brunes (Nguyen et al., 2012d). Cette évolution pose la question du « comment gérer les données empiriques et celles simulées dans de tels systèmes ». Le constat que l’on peut faire est que, si la conception et la simulation actuelles des modèles ont bénéficié des avancées informatiques à travers l’utilisation des plateformes populaires telles que Netlogo (Wilensky, 1999) ou GAMA (Taillandier et al., 2012), ce n'est pas encore le cas de la gestion des données, qui sont encore très souvent gérées de manière ad-hoc. Cette gestion des données dans des Modèles Basés Agents (ABM) est une des limitations actuelles des plateformes de simulation multiagents (SMA). Autrement dit, un tel outil de gestion des données est actuellement requis dans la construction des systèmes de simulation par agents et la gestion des bases de données correspondantes est aussi un problème important de ces systèmes. Dans cette thèse, je propose tout d’abord une structure logique pour la gestion des données dans des plateformes de SMA. La structure proposée qui intègre des solutions de l’Informatique Décisionnelle et des plateformes multi-agents s’appelle CFBM (Combination Framework of Business intelligence and Multi-agent based platform), elle a plusieurs objectifs : (1) modéliser et exécuter des SMAs, (2) gérer les données en entrée et en sortie des simulations, (3) intégrer les données de différentes sources, et (4) analyser les données à grande échelle. Ensuite, le besoin de la gestion des données dans les simulations agents est satisfait par une implémentation de CFBM dans la plateforme GAMA. Cette implémentation présente aussi une architecture logicielle pour combiner entrepôts deIv données et technologies du traitement analytique en ligne (OLAP) dans les systèmes SMAs. Enfin, CFBM est évaluée pour la gestion de données dans la plateforme GAMA à travers le développement de modèles de surveillance des cicadelles brunes (BSMs), où CFBM est utilisé non seulement pour gérer et intégrer les données empiriques collectées depuis le système cible et les résultats de simulation du modèle simulé, mais aussi calibrer et valider ce modèle. L'intérêt de CFBM réside non seulement dans l'amélioration des faiblesses des plateformes de simulation et de modélisation par agents concernant la gestion des données mais permet également de développer des systèmes de simulation complexes portant sur de nombreuses données en entrée et en sortie en utilisant l’approche dirigée par les données.Recently, there has been a shift from modeling driven approach to data driven approach inAgent Based Modeling and Simulation (ABMS). This trend towards the use of data-driven approaches in simulation aims at using more and more data available from the observation systems into simulation models (Edmonds and Moss, 2005; Hassan, 2009). In a data driven approach, the empirical data collected from the target system are used not only for the design of the simulation models but also in initialization, calibration and evaluation of the output of the simulation platform such as e.g., the water resource management and assessment system of the French Adour-Garonne Basin (Gaudou et al., 2013) and the invasion of Brown Plant Hopper on the rice fields of Mekong River Delta region in Vietnam (Nguyen et al., 2012d). That raises the question how to manage empirical data and simulation data in such agentbased simulation platform. The basic observation we can make is that currently, if the design and simulation of models have benefited from advances in computer science through the popularized use of simulation platforms like Netlogo (Wilensky, 1999) or GAMA (Taillandier et al., 2012), this is not yet the case for the management of data, which are still often managed in an ad hoc manner. Data management in ABM is one of limitations of agent-based simulation platforms. Put it other words, such a database management is also an important issue in agent-based simulation systems. In this thesis, I first propose a logical framework for data management in multi-agent based simulation platforms. The proposed framework is based on the combination of Business Intelligence solution and a multi-agent based platform called CFBM (Combination Framework of Business intelligence and Multi-agent based platform), and it serves several purposes: (1) model and execute multi-agent simulations, (2) manage input and output data of simulations, (3) integrate data from different sources; and (4) analyze high volume of data. Secondly, I fulfill the need for data management in ABM by the implementation of CFBM in the GAMA platform. This implementation of CFBM in GAMA also demonstrates a software architecture to combine Data Warehouse (DWH) and Online Analytical Processing (OLAP) technologies into a multi-agent based simulation system. Finally, I evaluate the CFBM for data management in the GAMA platform via the development of a Brown Plant Hopper Surveillance Models (BSMs), where CFBM is used ii not only to manage and integrate the whole empirical data collected from the target system and the data produced by the simulation model, but also to calibrate and validate the models.The successful development of the CFBM consists not only in remedying the limitation of agent-based modeling and simulation with regard to data management but also in dealing with the development of complex simulation systems with large amount of input and output data supporting a data driven approach

    To Develop a Database Management Tool for Multi-Agent Simulation Platform

    Get PDF
    Depuis peu, la Modélisation et Simulation par Agents (ABMs) est passée d'une approche dirigée par les modèles à une approche dirigée par les données (Data Driven Approach, DDA). Cette tendance vers l’utilisation des données dans la simulation vise à appliquer les données collectées par les systèmes d’observation à la simulation (Edmonds and Moss, 2005; Hassan, 2009). Dans la DDA, les données empiriques collectées sur les systèmes cibles sont utilisées non seulement pour la simulation des modèles mais aussi pour l’initialisation, la calibration et l’évaluation des résultats issus des modèles de simulation, par exemple, le système d’estimation et de gestion des ressources hydrauliques du bassin Adour-Garonne Français (Gaudou et al., 2013) et l’invasion des rizières du delta du Mékong au Vietnam par les cicadelles brunes (Nguyen et al., 2012d). Cette évolution pose la question du « comment gérer les données empiriques et celles simulées dans de tels systèmes ». Le constat que l’on peut faire est que, si la conception et la simulation actuelles des modèles ont bénéficié des avancées informatiques à travers l’utilisation des plateformes populaires telles que Netlogo (Wilensky, 1999) ou GAMA (Taillandier et al., 2012), ce n'est pas encore le cas de la gestion des données, qui sont encore très souvent gérées de manière ad-hoc. Cette gestion des données dans des Modèles Basés Agents (ABM) est une des limitations actuelles des plateformes de simulation multiagents (SMA). Autrement dit, un tel outil de gestion des données est actuellement requis dans la construction des systèmes de simulation par agents et la gestion des bases de données correspondantes est aussi un problème important de ces systèmes. Dans cette thèse, je propose tout d’abord une structure logique pour la gestion des données dans des plateformes de SMA. La structure proposée qui intègre des solutions de l’Informatique Décisionnelle et des plateformes multi-agents s’appelle CFBM (Combination Framework of Business intelligence and Multi-agent based platform), elle a plusieurs objectifs : (1) modéliser et exécuter des SMAs, (2) gérer les données en entrée et en sortie des simulations, (3) intégrer les données de différentes sources, et (4) analyser les données à grande échelle. Ensuite, le besoin de la gestion des données dans les simulations agents est satisfait par une implémentation de CFBM dans la plateforme GAMA. Cette implémentation présente aussi une architecture logicielle pour combiner entrepôts deIv données et technologies du traitement analytique en ligne (OLAP) dans les systèmes SMAs. Enfin, CFBM est évaluée pour la gestion de données dans la plateforme GAMA à travers le développement de modèles de surveillance des cicadelles brunes (BSMs), où CFBM est utilisé non seulement pour gérer et intégrer les données empiriques collectées depuis le système cible et les résultats de simulation du modèle simulé, mais aussi calibrer et valider ce modèle. L'intérêt de CFBM réside non seulement dans l'amélioration des faiblesses des plateformes de simulation et de modélisation par agents concernant la gestion des données mais permet également de développer des systèmes de simulation complexes portant sur de nombreuses données en entrée et en sortie en utilisant l’approche dirigée par les données.Recently, there has been a shift from modeling driven approach to data driven approach inAgent Based Modeling and Simulation (ABMS). This trend towards the use of data-driven approaches in simulation aims at using more and more data available from the observation systems into simulation models (Edmonds and Moss, 2005; Hassan, 2009). In a data driven approach, the empirical data collected from the target system are used not only for the design of the simulation models but also in initialization, calibration and evaluation of the output of the simulation platform such as e.g., the water resource management and assessment system of the French Adour-Garonne Basin (Gaudou et al., 2013) and the invasion of Brown Plant Hopper on the rice fields of Mekong River Delta region in Vietnam (Nguyen et al., 2012d). That raises the question how to manage empirical data and simulation data in such agentbased simulation platform. The basic observation we can make is that currently, if the design and simulation of models have benefited from advances in computer science through the popularized use of simulation platforms like Netlogo (Wilensky, 1999) or GAMA (Taillandier et al., 2012), this is not yet the case for the management of data, which are still often managed in an ad hoc manner. Data management in ABM is one of limitations of agent-based simulation platforms. Put it other words, such a database management is also an important issue in agent-based simulation systems. In this thesis, I first propose a logical framework for data management in multi-agent based simulation platforms. The proposed framework is based on the combination of Business Intelligence solution and a multi-agent based platform called CFBM (Combination Framework of Business intelligence and Multi-agent based platform), and it serves several purposes: (1) model and execute multi-agent simulations, (2) manage input and output data of simulations, (3) integrate data from different sources; and (4) analyze high volume of data. Secondly, I fulfill the need for data management in ABM by the implementation of CFBM in the GAMA platform. This implementation of CFBM in GAMA also demonstrates a software architecture to combine Data Warehouse (DWH) and Online Analytical Processing (OLAP) technologies into a multi-agent based simulation system. Finally, I evaluate the CFBM for data management in the GAMA platform via the development of a Brown Plant Hopper Surveillance Models (BSMs), where CFBM is used ii not only to manage and integrate the whole empirical data collected from the target system and the data produced by the simulation model, but also to calibrate and validate the models.The successful development of the CFBM consists not only in remedying the limitation of agent-based modeling and simulation with regard to data management but also in dealing with the development of complex simulation systems with large amount of input and output data supporting a data driven approach

    Addressing the evolution of automated user behaviour patterns by runtime model interpretation

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-013-0371-3The use of high-level abstraction models can facilitate and improve not only system development but also runtime system evolution. This is the idea of this work, in which behavioural models created at design time are also used at runtime to evolve system behaviour. These behavioural models describe the routine tasks that users want to be automated by the system. However, users¿ needs may change after system deployment, and the routine tasks automated by the system must evolve to adapt to these changes. To facilitate this evolution, the automation of the specified routine tasks is achieved by directly interpreting the models at runtime. This turns models into the primary means to understand and interact with the system behaviour associated with the routine tasks as well as to execute and modify it. Thus, we provide tools to allow the adaptation of this behaviour by modifying the models at runtime. This means that the system behaviour evolution is performed by using high-level abstractions and avoiding the costs and risks associated with shutting down and restarting the system.This work has been developed with the support of MICINN, under the project EVERYWARE TIN2010-18011, and the support of the Christian Doppler Forschungsgesellschaft and the BMWFJ, Austria.Serral Asensio, E.; Valderas Aranda, PJ.; Pelechano Ferragud, V. (2013). Addressing the evolution of automated user behaviour patterns by runtime model interpretation. Software and Systems Modeling. https://doi.org/10.1007/s10270-013-0371-3SWeiser, M.: The computer of the 21st century. Sci. Am. 265, 66–75 (1991)Serral, E., Valderas, P., Pelechano, V.: Context-adaptive coordination of pervasive services by interpreting models during runtime. Comput. J. 56(1), 87–114 (2013)Ajila, S.A., Alam, S.: Using a formal language constructs for software model evolution. In: Third IEEE International Conference on Semantic Computing (IEEE-ICSC 2009). Berkeley, CA, USA, pp. 390–395 (2009)Bennett, K., Rajlich, V.: Software Maintenance and Evolution: A Roadmap. In: 22nd International Conference on Software Engineering (ICSE 2000). Limerick, Ireland, pp. 75–87 (2000)Mens, T.: The ERCIM working group on software evolution: the past and the future. In: Proceedings of the Joint International and Annual ERCIM Workshops on Principles of Software Evolution (IWPSE) and Software Evolution (Evol) Workshops. ACM (2009)Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R.: Challenges in software evolution. In: Report of the ChaSE 2005 Workshop Organised by the ERCIM Working Group on Software Evolution. IWPSE-05. Lisbon, Portugal, pp. 13–22 (2005)Hirschfeld, R., Kawamura, K., Berndt, H.: Dynamic service adaptation for runtime system extensions. In: Wireless On-Demand Network Systems, pp. 227–240. Springer, Berlin, Heidelberg, Madonna di Campiglio, Italy (2004)Lientz, B.P., Swanson, E.B.: Software maintenance management: a study of the maintenance of computer applications software in 487 data processing organizations. Addison-Wesley, Reading, MA (1980)Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a taxonomy of software change. J. Softw. Maint. Evolut. Res. Pract. 17(5), 309–332 (2003)Hardian, B., Indulska, J., Henricksen, K.: Balancing autonomy and user control in context-aware systems—a survey. In: CoMoRea, IEEE PerCom Workshops 2006. (2006)Biegel, G., Cahill, V.: A framework for developing mobile, context-aware applications. In: The 2nd IEEE Conference on Pervasive Computing and Communication (PerCom), pp. 361–365 (2004)Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J.: Context-awareness on mobile devices—the hydrogen approach. In: The 36th Annual Hawaii International Conference on System Sciences, pp. 292–302 (2002)Dey, A.K.: Understanding and using context. Pers. Ubiquitous Comput. 5(1), 4–7 (2001)Sheng, Q.Z., Benatallah, B.: ContextUML: a UML-based modelling language for model-driven development of context-aware web services. In: Proceedings of the International Conference on Mobile, Business (ICMB’05). pp. 206–212 (2005)Henricksen, K., Indulska, J.: A software engineering framework for context-aware pervasive computing. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PerCom 2004), pp. 77–86. IEEE, Orlando, FL, USA (2004)Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc Ubiquitous Comput. 2(4), 263–277 (2007)Ye, J., Coyle, L., Dobson, S., Nixon, P.: Ontology-based models in pervasive computing systems. Knowl. Eng. Rev. 22(4), 315–347 (2007)Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing environments. Special Issue on Ontologies for Distributed Systems. Knowl. Eng. Rev. 18(3), 197–207 (2004)Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide. vol. W3C Recomm. W3C Recommendation 10 Feb 2004 (2004)Shepherd, A.: HTA as a framework for task analysis. Ergonomics 41, 1537–1552 (1998)Serral, E., Valderas, P., Pelechano, V.: Towards the model driven development of context-aware pervasive systems. Special Issue on Context Modelling, Reasoning and Management. PMC 6(2), 254–280 (2010)Serral, E.: Automating Routine Tasks in Smart Environments. A Context-aware Model-driven Approach, Technical University of Valencia (2011)Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model Driven Architecture. Addison-Wesley, Indianapolis (2002)Muñoz, J., Ferragud, D.V.P.: Model Driven Development of Pervasive Systems. Building a Software Factory. Universidad Politécnica de Valencia, Valencia (2008)Juric, M.B., Sarang, P.: Business Process Execution Language for Web Services: BPEL and BPEL4WS (2006)Loke, S.W., Smanchat, S., Ling, S., Indrawan, M.: Formal mirror models: an approach to just-in-time reasoning for device ecologies. Int. J. Smart Home 2(1), 15–32 (2008)Code Generation conference. http://www.codegeneration.net/cg2010/ (2010)Guy, M.: Report 2: API Good Practice Good practice for provision of and consuming APIs. UKOLN (2009)Bloch, J.: How to design a good API and why it matters. pp. 506–507 (2005)Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007)Bernstein, P.: Multiversion concurrency control—theory and algorithms. ACM Trans. Database Syst. 8(4), 465–484 (1983)Cooper, S., Dann, W., Pausch, R.: Alice: a 3-D tool for introductory programming concepts. J. Comput. Sci. Coll. 15, 107–116 (2000)Pérez, F., Valderas, P.: Allowing end-users to actively participate within the elicitation of pervasive system requirements through immediate visualization. In: Fourth International Workshop on Requirements Engineering Visualization (REV), pp. 31–40. IEEE, Atlanta, Georgia, USA (2009)Lieberman, H., Paternó, F., Wulf, V.: End User Development. Springer, Dordrecht (2006)Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers Inc, San Francisco (1993)Van Welie, M., Trætteberg, H.: Interaction Patterns in User, Interfaces. pp. 13–16 (2000)Galitz, W.O.: The Essential Guide to User Interface Design: An Introduction to GUI Design Principles and Techniques. Wiley, New York (2002)Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case studies for method and tool evaluation. Softw. IEEE 12(4), 52–62 (1995)Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation in Software Engineering. Springer, Berlin (2012)Jones, J.V.: Applied software measurement: assuring productivity & quality (2nd ed’97). McGraw-Hill, New York (1997)Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: First International Workshop on Advanced Context Modelling, Reasoning And Management at UbiComp (2004)Lewis, J.R.: Psychometric Evaluation of an After-Scenario Questionnaire for Computer Usability Studies? The ASQ. SIGCHI Bulletin (1991)Cook, D.J., Youngblood, M., Heierman, I.I.I.E.O., Gopalratnam, K., Rao, S., Litvin, A., Khawaja, F.: MavHome: An Agent-based Smart Home. In: First IEEE International Conference on Pervasive Computing and, Communications (PerCom’03), pp. 521–524 (2003)Hagras, H., Callaghan, V., Colley, M., Clarke, G., Pounds-Cornish, A., Duman, H.: Creating an ambient-intelligence environment using embedded agents. IEEE Intell. Syst. 19(6), 12–20 (2004)Rashidi, P., Cook, D.J.: Keeping the resident in the loop: adapting the smart home to the user. IEEE Trans. Syst. Man Cybern. 39(5), 949–959 (2009)Webb, G.I., Pazzani, M.J., Billsus, D.: Machine learning for user modeling. User model. User-Adapt Interact. 11(1–2), 19–29 (2001)Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)Serral, E., Valderas, P., Pelechano, V.: (2011) Improving the cold-start problem in user task automation by using models at runtime. In: Information Systems Development, pp. 671–683. (2011)García-Herranz, M., Haya, P.A., Esquivel, A., Montoro, G., Alamán, X.: Easing the smart home: semi-automatic adaptation in perceptive environments. J. Univers. Comput. Sci. 14(9), 1529–1544 (2008)Henricksen, K., Indulska, J., Rakotonirainy, A.: Using context and preferences to implement self-adapting pervasive computing applications. Sofw. Pract. Exp. 36(11–12), 1307–1330 (2006)Johnson, P.: Tasks and situations: considerations for models and design principles in human computer interaction, pp. 1199–1204. HCI International. Munich, Germany (1999)Cook, D.J., Das, S.K.: Smart environments: technologies, protocols, and applications, vol. 43. Wiley-Interscience, New York (2005)Paternò, F.: ConcurTaskTrees: an Engineered approach to model-based design of interactive systems. In: The Handbook of Analysis for Human-Computer Interaction, pp. 483–500 (2002)Pribeanu, C., Limbourg, Q., Vanderdonckt1, J.: Task modelling for context-sensitive user interfaces. In: Interactive Systems: Design, Specification, and Verification (DSV-IS), pp. 49–68. Springer, Berlin, Heidelberg 2001, Glasgow, Scotland, UK (2001)Souchon, N., Limbourg, Q., Vanderdonckt., J.: Task modelling in multiple contexts of use. In: Interactive Systems: Design, Specification, and Verification (DSV-IS), pp. 59–73 (2002)Huang, R., Cao, Q., Zhou, J., Sun, D., Su, Q.: Context-aware active task discovery for pervasive computing. In: International Conference on Computer Science and Software Engineering, pp. 463–466. IEEE, Wuhan, China (2008)Sousa, J.P., Poladian, V., Garlan, D., Schmerl, B.: Task-based adaptation for ubiquitous computing. IEEE Trans. Syst. Man Cybern. 36(3), 328–340 (2006)Masuoka, R., Parsia, B., Labrou, Y.: Task Computing—The Semantic Web Meets Pervasive Computing. In: 2nd International Semantic Web Conference on the Semantic Web (ISWC 2003), pp. 866–881. vol. LNCS 2870. Sanibel Island, FL, USA (2003)Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to self-adaptive software. IEEE Intell. Syst. Their Appl. 14(3), 54–62 (1999)Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjørven, E.: Using Architecture Models for Runtime Adaptability. IEEE Software. 23(2), 62–70 (2006)Morin, B., Jézéquel, J.-M., Fleurey, F., Solberg, A.: Models at runtime to support dynamic adaptation. IEEE Comput. Soc. pp. 46–53 (2009)Cetina, C., Giner, P., Fons, J., Pelechano, V.: Using feature models for developing self-configuring smart homes. In: Fifth International Conference on Autonomic and Autonomous Systems, pp. 179–188. IEEE, Valencia, Spain (2009)Garlan, D., Schmerl, B.: Using architectural models at runtime: research challenges. In: Proceedings of the European Workshop on Software Architectures, pp. 200–205. Springer, Berlin, Heidelberg, St Andrews, UK (2004)Blumendorf, M., Lehmann, G., Feuerstack, S., Albayrak, S.: Executable models for human-computer interaction. In: Interactive Systems, Design, Specification, and Verification Workshop (DSV-IS 2008), pp. 238–251. Springer Berlin Heidelberg, Kingston, Canada (2008)Ballagny, C., Hameurlain, N., Barbier, F.: MOCAS: a state-based component model for self-adaptation. In: Third IEEE International Conference on Self-Adaptive and Self-Organizing Systems, pp. 206–215. IEEE, San Francisco, California (2009)Amoui, M., Derakhshanmanesh, M., Ebert, J., Tahvildari, L.: Achieving dynamic adaptation via management and interpretation of runtime models. J. Syst. Softw. 85(12), 2720–2737 (2012)Blair, G., Bencomo, N., France, R.B.: [email protected]. IEEE Comput. 42, 22–27 (2009)Zhang, J., Cheng, B.H.C.: Model based development of dynamically adaptive software. In: International Conference on Software Engineering (ICSE’06), pp. 371–380. ACM, Shanghai, China (2006

    Investigating the use of pure functional programming for agent-based simulation

    Get PDF
    This thesis investigates the use of pure functional programming in Agent-Based Simulation (ABS) with the language Haskell. The central theme of this thesis is to do with purity, which identifies the lack of unrestricted side effects and referential transparency. Thematically, the research presented in this thesis is split into two parts. The first part deals with the approach to a pure functional ABS implementation and the second part with exploring benefits enabled through pure functional programming. First, the thesis explores how to implement ABS in a pure functional way, discussing both a time and event-driven approach. In each case Arrowized Functional Reactive Programming is used to derive fundamental abstractions and concepts. As use cases the well known agent-based SIR and the Sugarscape models are used. Additionally, the thesis focuses on why it is beneficial to implement ABS in a pure functional way. For this research topic, we explore both robust parallel and concurrent programming, where the main focus is on how to speed up the simulation while keeping it as pure as possible. In the parallel part, we rely on built-in language features and are able to speed the simulation up while retaining purity. In the concurrency part, Software Transactional Memory is used, sacrificing purity but still retaining certain guarantees about reproducibility. Finally, the thesis explores automated code testing of ABS implementations using property-based testing to show how to encode agent specifications and model invariants and perform model verification and hypothesis testing. The contribution of this thesis is threefold: 1. Development of pure functional implementation techniques for ABS through the use of Arrowized Functional Reactive Programming. 2. Development of techniques using Software Transactional Memory to implement robust concurrent ABS. 3. Development of a new testing approach to ABS using randomised propertybased testing for declarative and stochastic code testing. The results of the respective contributions support the view that pure functional programming indeed has its place in ABS. First, a pure functional approach leads to implementations which are more likely to be valid due to the focus on purity by avoiding computations with unrestricted side effects. Secondly, pure parallel computation and Software Transactional Memory (lockfree) based concurrency make it possible to gain substantial speedup, with the latter one dramatically outperforming traditional lock-based approaches. While pure parallel computation fully retains static guarantees, Software Transactional Memory is not pure, but is still able to retain certain guarantees regarding reproducibility. Finally, property-based testing is shown to be extremely useful, as it naturally maps to the stochastic nature of ABS and is therefore suitable to be integrated into the development process as an additional tool for testing specifications and hypotheses

    Analysis and design of multiagent systems using MAS-CommonKADS

    Get PDF
    This article proposes an agent-oriented methodology called MAS-CommonKADS and develops a case study. This methodology extends the knowledge engineering methodology CommonKADSwith techniquesfrom objectoriented and protocol engineering methodologies. The methodology consists of the development of seven models: Agent Model, that describes the characteristics of each agent; Task Model, that describes the tasks that the agents carry out; Expertise Model, that describes the knowledge needed by the agents to achieve their goals; Organisation Model, that describes the structural relationships between agents (software agents and/or human agents); Coordination Model, that describes the dynamic relationships between software agents; Communication Model, that describes the dynamic relationships between human agents and their respective personal assistant software agents; and Design Model, that refines the previous models and determines the most suitable agent architecture for each agent, and the requirements of the agent network

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications
    corecore