842 research outputs found

    Constraining modern day silicon cycling in Lake Baikal

    Get PDF
    Constraining the continental silicon cycle is a key requirement in attempts to understand both nutrient fluxes to the ocean and linkages between silicon and carbon cycling over different timescales. Silicon isotope data of dissolved silica (δ30SiDSi) are presented here from Lake Baikal and its catchment in central Siberia. As well as being the world's oldest and voluminous lake, Lake Baikal lies within the seventh largest drainage basin in the world and exports significant amounts of freshwater into the Arctic Ocean. Data from river waters accounting for c. 92% of annual river inflow to the lake suggest no seasonal alteration or anthropogenic impact on river δ30SiDSi composition. The absence of a change in δ30SiDSi within the Selenga Delta, through which 62% of riverine flow passes, suggest a net balance between biogenic uptake and dissolution in this system. A key feature of this study is the use of δ30SiDSi to examine seasonal and spatial variations in DSi utilisation and export across the lake. Using an open system model against deep water δ30SiDSi values from the lake, we estimate that 20-24% of DSi entering Lake Baikal is exported into the sediment record. Whilst highlighting the impact that lakes may have upon the sequestration of continental DSi, mixed layer δ30SiDSi values from 2003 and 2013 show significant spatial variability in the magnitude of spring bloom nutrient utilisation with lower rates in the north relative to south basin

    Climate Change and the World’s “Sacred Sea”—Lake Baikal, Siberia

    Get PDF
    Lake Baikal—the world\u27s largest, oldest, and most biotically diverse lake—is responding strongly to climate change, according to recent analyses of water temperature and ice cover. By the end of this century, the climate of the Baikal region will be warmer and wetter, particularly in winter. As the climate changes, ice cover and transparency, water temperature, wind dynamics and mixing, and nutrient levels are the key abiotic variables that will shift, thus eliciting many biotic responses. Among the abiotic variables, changes in ice cover will quite likely alter food-web structure and function most because of the diverse ways in which ice affects the lake\u27s dominant primary producers (endemic diatoms), the top predator (the world\u27s only freshwater seal), and other abiotic variables. Melting permafrost will probably exacerbate the effects of additional anthropogenic stressors (industrial pollution and cultural eutrophication) and could greatly affect ecosystem functioning

    Remote Sensing of Floodpath Lakes and Wetlands: A Challenging Frontier in the Monitoring of Changing Environments

    Get PDF
    Monitoring of changing lake and wetland environments has long been among the primary focus of scientific investigation, technology innovation, management practice, and decision-making analysis. Floodpath lakes and wetlands are the lakes and associated wetlands affected by seasonal variations of water level and water surface area. Floodpath lakes and wetlands are, in particular, sensitive to natural and anthropogenic impacts, such as climate change, human-induced intervention on hydrological regimes, and land use and land cover change. Rapid developments of remote sensing science and technologies, provide immense opportunities and capacities to improve our understanding of the changing lake and wetland environments. This special issue on Remote Sensing of Floodpath Lakes and Wetlands comprise featured articles reporting the latest innovative research and reflects the advancement in remote sensing applications on the theme topic. In this editorial paper, we review research developments using state-of-the-art remote sensing technologies for monitoring dynamics of floodpath lakes and wetlands; discuss challenges of remote sensing in inventory, monitoring, management, and governance of floodpath lakes and wetlands; and summarize the highlights of the articles published in this special issue

    Spatial differences in dissolved silicon utilisation in Lake Baikal, Siberia: examining the impact of high diatom biomass events and eutrophication

    Get PDF
    Recent research has highlighted how Lake Baikal, Siberia, has responded to the direct and indirect effects of climate change (e.g., ice-cover duration), nutrient loading, and pollution, manifesting as changes in phytoplankton/zooplankton populations, community structure, and seasonal succession. Here, we combine and compare= analyses of chlorophyll a (an estimate of total algal biomass), carotenoid pigments (biomarkers of algal groups), and lake water silicon isotope geochemistry (d30SiDSi) to differentiate spatial patterns in dissolved silicon (DSi) uptake at Lake Baikal. A total of 15 sites across the three basins (south, central, and north) of Lake Baikal were sampled in August 2013 along a depth gradient of 0–180 m. Strong, significant correlations were found between vertical profiles of photic zone DSi concentrations and d30SiDSi compositions (r 5 20.81, p < 0.001), although these are strongest in the central basin aphotic zone (r 5 20.98, p < 0.001). Data refute the hypothesis of DSi uptake by picocyanobacteria. Algal biomass profiles and high surface d30SiDSi compositions suggest greater productivity in the south basin and more oligotrophic conditions in the north basin. d30SiDSi signatures are highest at depth (20 m) in central basin sites, indicating greater (10–40%) DSi utilization at deep chlorophyll maxima. DSi limitation occurs in the pelagic central basin, probably reflecting a high diatom biomass bloom event (Aulacoseira baicalensis). Meanwhile in the more hydrologically restricted, shallow Maloe More region (central basin), both high d30SiDSi compositions and picocyanobacteria (zeaxanthin) concentrations, respectively point to the legacy of an “Aulacoseira bloom year” and continuous nutrient supply in summer months (e.g., localized eutrophication)

    An Overview of Remote Sensing in Russian Forestry

    Get PDF
    The Russian Federation possesses vast forested areas, containing about 23% of the world's closed forests. A significant part of these forestlands is neither managed nor regularly monitored. This is due in part to the absence of developed infrastructure in the remote northern regions, which hampers the collection of data on forest inventory and monitoring in all areas by precise and expensive on-ground methods. As a result, the monitoring in all areas by precise and expensive on-ground methods. As a result, the former Soviet Union conducted intensive research on remote sensing during the last few decades, resulting in significant achievements. However, there has been a noticeable decline in remote sensing research and applications in the Russian forest sector from 1990-1998. Russia needs a new system of forest inventory and monitoring capable of providing reliable, practical information for sustainable forest management. Such a system should take into account current national demands on the Russian forest sector as well as the international obligations of the country. Remote sensing methods are an indispensable part of such a system. These methods will play a crucial role in critical applications such as ensuring the sustainability of forest management, protecting threatened forests, fulfilling the countrys Kyoto Protocol obligations, and others. This paper presents an overview of past and current remote sensing methods in the Russian forest sector, including both practical and scientific applications. Based on this overview, relevant applications of remote sensing methods in the Russian forest sector are discussed. This discussion considers current Russian economic conditions and the direction of political and social development of the country

    Composition and physico-chemical properties of bottom sediments in the southern part of the Bratsk Reservoir (Russia)

    Get PDF
    The paper presents the results of studies of bottom sediments taken from the southern part of the Bratsk Reservoir. The following analyses have been conducted: trace element analysis, particle-size analysis as well as chemical analysis of water, hydrochloric acid and alkaline extracts for 18 samples of the bottom sediments. The granulometric analysis has identified the predominance of fine silt and silty-clayed sediments. The data on the content of trace elements in the bottom sediments of the Bratsk Reservoir is presented in comparison with their content in the natural environment of the Baikal region; the anomaly ratio was used to characterize the excess for trace elements. The chemical analysis of extracts has showed “saline contamination” of mud (silt), high concentration of carbonates in it, as well as the presence of mobile (free) forms of aluminum oxide. In this research, an attempt was made by using a correlation analysis to evaluate the impact of various physical and chemical characteristics of the bottom sediments, such as the content of clay fraction, organic carbon, carbonates, and water-soluble salts on the accumulation of trace elements

    Assessing the impacts of global change on water quantity and quality: Large-scale modelling studies for Central Asia

    Get PDF
    Water resources in the semi-arid to arid areas of Central Asia are often limited by low precipitation, and hence vulnerable to impacts of global change, i.e. socio-economic development and climate change. Both, socio-economic development and climate change are very likely causing significant changes as water resources are affected by two main effects: Firstly, growing population and industrial activities in the region raise the pressure on water resources due to increasing water abstractions. Secondly, air temperature in the region has been rising in the past far above global average and it is expected to increase further, which will lead to changes in runoff generation and therefore water availability. Increasing temperature as well as increasing water abstractions will affect water quantity and consequently water quality as a result of higher pollution intake or reduction in dilution capacity. Thus, it is of crucial importance to analyse and assess the state of current and future water resources to implement sustainable water management as the above mentioned effects very likely causing significant changes of water resources. Within the last years, the number of scientific research studies using large-scale models to simulate water availability and water use has increased substantially. Several new datasets from earth observations and new or improved models have been published (Werth et al. 2009; Werth and Güntner 2010; van Beek et al. 2011). Nevertheless, those studies focussed on water quantity and did not take into account impacts on water quality induced by global change although changes in water quality affecting aquatic ecosystems and species. Furthermore, spatially explicit large-scale modelling studies have not been carried out for Mongolia and Central Asia to get a comprehensive overview and assessment. To address this research gap, the large-scale water resource modelling framework WaterGAP 3 was applied to Central Asia with a focus on Mongolia to simulate impacts on current and future water resources. WaterGAP 3 consists of hydrology, water use and water quality sub-models in order to simulate current and future water quantity and quality

    Bridging Gaps Among Scientific Disciplines. Paper Presented on IIASA's 20th Anniversary

    Get PDF
    IIASA celebrated its twentieth anniversary on May 12-13 with its fourth general conference, IIASA '92: An International Conference on the Challenges to Systems Analysis in the Nineties and Beyond. The conference focused on the relations between environment and development and on studies that integrate the methods and findings of several disciplines. The role of systems analysis, a method especially suited to taking account of the linkages between phenomena and of the hierarchical organization of the natural and social world, was also assessed, taking account of the implications this has for IIASA's research approach and activities. This paper is one of six IIASA Collaborative Papers published as part of the report on the conference, an earlier instalment of which was Science and Sustainability, published in 1992. Professor Koptyug's paper is written from the viewpoint of a chemist, but of one who has an unusual consciousness of error in estimates of some of the vital parameters affecting the environment. He finds a variation of 100 percent between the low and high estimates of absorption of carbon dioxide by the oceans, and adding that to the similar variation in estimate of emissions and related quantities he ends up with a four-fold variation between the lowest and the highest rate of accumulation of carbon dioxide in the atmosphere. Yet the paper does not argue from this that we should do nothing until we know more. We know in what directions we have to move as we try for stability, and are learning something about directions we should not try. A lesson was learned in this latter sense from the building of a dam across a bay in the Caspian Sea in order to reduce evaporation. The story is that with the agricultural and industrial development along the Volga River the level of the Caspian Sea fell by three meters between 1933 and 1977. It was hoped that the darn separating off the Black Jaws Gulf would counteract the withdrawal of water from higher up. But there seems at the same time to have been a flow of water of unknown origin into the Caspian Sea. The Gulf dried out by evaporation, while the Caspian Sea rose a wholly unanticipated 13 centimeters per year. Such a rise was disastrous for people living along the coast, and the dam is now to be destroyed. For me the lesson is not that we should never do anything about the environment, hut rather that we should look very closely and be very sure of our knowledge base before we try smart tricks with the planet in the hope of neutralizing the effects of irresponsible industrialization. One such smart trick that was fortunately checked before it started to be built was the diversion southward of four major rivers that flow into the Arctic Ocean. No one has any way of estimating what unanticipated results might come from that, what uncontrollable positive feedback loops it might initiate. These are among the things I have learned from Professor Koptyug's paper
    corecore