69 research outputs found

    Extending twin support vector machine classifier for multi-category classification problems

    Get PDF
    © 2013 – IOS Press and the authors. All rights reservedTwin support vector machine classifier (TWSVM) was proposed by Jayadeva et al., which was used for binary classification problems. TWSVM not only overcomes the difficulties in handling the problem of exemplar unbalance in binary classification problems, but also it is four times faster in training a classifier than classical support vector machines. This paper proposes one-versus-all twin support vector machine classifiers (OVA-TWSVM) for multi-category classification problems by utilizing the strengths of TWSVM. OVA-TWSVM extends TWSVM to solve k-category classification problems by developing k TWSVM where in the ith TWSVM, we only solve the Quadratic Programming Problems (QPPs) for the ith class, and get the ith nonparallel hyperplane corresponding to the ith class data. OVA-TWSVM uses the well known one-versus-all (OVA) approach to construct a corresponding twin support vector machine classifier. We analyze the efficiency of the OVA-TWSVM theoretically, and perform experiments to test its efficiency on both synthetic data sets and several benchmark data sets from the UCI machine learning repository. Both the theoretical analysis and experimental results demonstrate that OVA-TWSVM can outperform the traditional OVA-SVMs classifier. Further experimental comparisons with other multiclass classifiers demonstrated that comparable performance could be achieved.This work is supported in part by the grant of the Fundamental Research Funds for the Central Universities of GK201102007 in PR China, and is also supported by Natural Science Basis Research Plan in Shaanxi Province of China (Program No.2010JM3004), and is at the same time supported by Chinese Academy of Sciences under the Innovative Group Overseas Partnership Grant as well as Natural Science Foundation of China Major International Joint Research Project (NO.71110107026)

    Study on proximal support vector machine as a classifier

    Get PDF
    Proximal Support Vector machine based on Least Mean Square Algorithm classi-fiers (LMS-SVM) are tools for classification of binary data. Proximal Support Vector based on Least Mean Square Algorithm classifiers is completely based on the theory of Proximal Support Vector Machine classifiers (PSVM). PSVM classifies binary pat- terns by assigning them to the closest of two parallel planes that are pushed apart as far as possible. The training time for the classifier is found to be faster compared to their previous versions of Support Vector Machines. But due to the presence of slack variable or error vector the classification accuracy of the Proximal Support Vector Machine is less. So we have come with an idea to update the adjustable weight vectors at the training phase such that all the data points fall out-side the region of separation and falls on the correct side of the hyperplane and to enlarge the width of the separable region.To implement this idea, Least Mean Square (LMS) algorithm is used to modify the adjustable weight vectors. Here, the error is represented by the minimum distance of data points from the margin of the region of separation of the data points that falls inside the region of separation or makes a misclassification and distance of data points from the separating hyperplane for the data points that falls on the wrong side of the hyperplane. This error is minimized using a modification of adjustable weight vectors. Therefore, as the number of iterations of the LMS algorithm increases, weight vector performs a random walk (Brownian motion) about the solution of optimal hy-perplane having a maximal margin that minimizes the error. Experimental results show that the proposed method classifies the binary pattern more accurately than classical Proximal Support Vector Machine classifiers

    Solution Path Algorithm for Twin Multi-class Support Vector Machine

    Full text link
    The twin support vector machine and its extensions have made great achievements in dealing with binary classification problems, however, which is faced with some difficulties such as model selection and solving multi-classification problems quickly. This paper is devoted to the fast regularization parameter tuning algorithm for the twin multi-class support vector machine. A new sample dataset division method is adopted and the Lagrangian multipliers are proved to be piecewise linear with respect to the regularization parameters by combining the linear equations and block matrix theory. Eight kinds of events are defined to seek for the starting event and then the solution path algorithm is designed, which greatly reduces the computational cost. In addition, only few points are combined to complete the initialization and Lagrangian multipliers are proved to be 1 as the regularization parameter tends to infinity. Simulation results based on UCI datasets show that the proposed method can achieve good classification performance with reducing the computational cost of grid search method from exponential level to the constant level
    corecore