15,301 research outputs found

    Nonlinear Integer Programming

    Full text link
    Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009, ISBN 354068274

    Minimizing the number of lattice points in a translated polygon

    Full text link
    The parametric lattice-point counting problem is as follows: Given an integer matrix A∈Zm×nA \in Z^{m \times n}, compute an explicit formula parameterized by b∈Rmb \in R^m that determines the number of integer points in the polyhedron {x∈Rn:Ax≤b}\{x \in R^n : Ax \leq b\}. In the last decade, this counting problem has received considerable attention in the literature. Several variants of Barvinok's algorithm have been shown to solve this problem in polynomial time if the number nn of columns of AA is fixed. Central to our investigation is the following question: Can one also efficiently determine a parameter bb such that the number of integer points in {x∈Rn:Ax≤b}\{x \in R^n : Ax \leq b\} is minimized? Here, the parameter bb can be chosen from a given polyhedron Q⊆RmQ \subseteq R^m. Our main result is a proof that finding such a minimizing parameter is NPNP-hard, even in dimension 2 and even if the parametrization reflects a translation of a 2-dimensional convex polygon. This result is established via a relationship of this problem to arithmetic progressions and simultaneous Diophantine approximation. On the positive side we show that in dimension 2 there exists a polynomial time algorithm for each fixed kk that either determines a minimizing translation or asserts that any translation contains at most 1+1/k1 + 1/k times the minimal number of lattice points

    Convergence of a greedy algorithm for high-dimensional convex nonlinear problems

    Full text link
    In this article, we present a greedy algorithm based on a tensor product decomposition, whose aim is to compute the global minimum of a strongly convex energy functional. We prove the convergence of our method provided that the gradient of the energy is Lipschitz on bounded sets. The main interest of this method is that it can be used for high-dimensional nonlinear convex problems. We illustrate this method on a prototypical example for uncertainty propagation on the obstacle problem.Comment: 36 pages, 9 figures, accepted in Mathematical Models and Methods for Applied Science

    A mixed â„“1\ell_1 regularization approach for sparse simultaneous approximation of parameterized PDEs

    Full text link
    We present and analyze a novel sparse polynomial technique for the simultaneous approximation of parameterized partial differential equations (PDEs) with deterministic and stochastic inputs. Our approach treats the numerical solution as a jointly sparse reconstruction problem through the reformulation of the standard basis pursuit denoising, where the set of jointly sparse vectors is infinite. To achieve global reconstruction of sparse solutions to parameterized elliptic PDEs over both physical and parametric domains, we combine the standard measurement scheme developed for compressed sensing in the context of bounded orthonormal systems with a novel mixed-norm based â„“1\ell_1 regularization method that exploits both energy and sparsity. In addition, we are able to prove that, with minimal sample complexity, error estimates comparable to the best ss-term and quasi-optimal approximations are achievable, while requiring only a priori bounds on polynomial truncation error with respect to the energy norm. Finally, we perform extensive numerical experiments on several high-dimensional parameterized elliptic PDE models to demonstrate the superior recovery properties of the proposed approach.Comment: 23 pages, 4 figure

    Variational approximation of functionals defined on 1-dimensional connected sets: the planar case

    Full text link
    In this paper we consider variational problems involving 1-dimensional connected sets in the Euclidean plane, such as the classical Steiner tree problem and the irrigation (Gilbert-Steiner) problem. We relate them to optimal partition problems and provide a variational approximation through Modica-Mortola type energies proving a Γ\Gamma-convergence result. We also introduce a suitable convex relaxation and develop the corresponding numerical implementations. The proposed methods are quite general and the results we obtain can be extended to nn-dimensional Euclidean space or to more general manifold ambients, as shown in the companion paper [11].Comment: 30 pages, 5 figure
    • …
    corecore