310 research outputs found

    Variance-constrained dissipative observer-based control for a class of nonlinear stochastic systems with degraded measurements

    Get PDF
    The official published version of the article can be obtained from the link below.This paper is concerned with the variance-constrained dissipative control problem for a class of stochastic nonlinear systems with multiple degraded measurements, where the degraded probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution over a given interval. The purpose of the problem is to design an observer-based controller such that, for all possible degraded measurements, the closed-loop system is exponentially mean-square stable and strictly dissipative, while the individual steady-state variance is not more than the pre-specified upper bound constraints. A general framework is established so that the required exponential mean-square stability, dissipativity as well as the variance constraints can be easily enforced. A sufficient condition is given for the solvability of the addressed multiobjective control problem, and the desired observer and controller gains are characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programming method. Finally, a numerical example is presented to show the effectiveness and applicability of the proposed algorithm.This work was supported in part by the Distinguished Visiting Fellowship of the Royal Academy of Engineering of the UK, the Royal Society of the UK, the GRF HKU 7137/09E, the National Natural Science Foundation of China under Grant 61028008, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, and the Alexander von Humboldt Foundation of Germany

    Stability and dissipativity analysis of static neural networks with time delay

    Get PDF
    This paper is concerned with the problems of stability and dissipativity analysis for static neural networks (NNs) with time delay. Some improved delay-dependent stability criteria are established for static NNs with time-varying or time-invariant delay using the delay partitioning technique. Based on these criteria, several delay-dependent sufficient conditions are given to guarantee the dissipativity of static NNs with time delay. All the given results in this paper are not only dependent upon the time delay but also upon the number of delay partitions. Some examples are given to illustrate the effectiveness and reduced conservatism of the proposed results.published_or_final_versio

    Localization of Control Synthesis Problem for Large-Scale Interconnected System Using IQC and Dissipativity Theories

    Full text link
    The synthesis problem for the compositional performance certification of interconnected systems is considered. A fairly unified description of control synthesis problem is given using integral quadratic constraints (IQC) and dissipativity. Starting with a given large-scale interconnected system and a global performance objective, an optimization problem is formulated to search for admissible dissipativity properties of each subsystems. Local control laws are then synthesized to certify the relevant dissipativity properties. Moreover, the term localization is introduced to describe a finite collection of syntheses problems, for the local subsystems, which are a feasibility certificate for the global synthesis problem. Consequently, the problem of localizing the global problem to a smaller collection of disjointed sets of subsystems, called groups, is considered. This works looks promising as another way of looking at decentralized control and also as a way of doing performance specifications for components in a large-scale system

    Dissipativity analysis of stochastic fuzzy neural networks with randomly occurring uncertainties using delay dividing approach

    Get PDF
    This paper focuses on the problem of delay-dependent robust dissipativity analysis for a class of stochastic fuzzy neural networks with time-varying delay. The randomly occurring uncertainties under consideration are assumed to follow certain mutually uncorrelated Bernoulli-distributed white noise sequences. Based on the Itô's differential formula, Lyapunov stability theory, and linear matrix inequalities techniques, several novel sufficient conditions are derived using delay partitioning approach to ensure the dissipativity of neural networks with or without time-varying parametric uncertainties. It is shown, by comparing with existing approaches, that the delay-partitioning projection approach can largely reduce the conservatism of the stability results. Numerical examples are constructed to show the effectiveness of the theoretical results

    Flow-plate interactions: Well-posedness and long-time behavior

    Full text link
    We consider flow-structure interactions modeled by a modified wave equation coupled at an interface with equations of nonlinear elasticity. Both subsonic and supersonic flow velocities are treated with Neumann type flow conditions, and a novel treatment of the so called Kutta-Joukowsky flow conditions are given in the subsonic case. The goal of the paper is threefold: (i) to provide an accurate review of recent results on existence, uniqueness, and stability of weak solutions, (ii) to present a construction of finite dimensional, attracting sets corresponding to the structural dynamics and discuss convergence of trajectories, and (iii) to state several open questions associated with the topic. This second task is based on a decoupling technique which reduces the analysis of the full flow-structure system to a PDE system with delay.Comment: 1 figure. arXiv admin note: text overlap with arXiv:1208.5245, arXiv:1311.124

    Necessary stochastic maximum principle for dissipative systems on infinite time horizon

    Get PDF
    We develop a necessary stochastic maximum principle for a finite-dimensional stochastic control problem in infinite horizon under a polynomial growth and joint monotonicity assumption on the coefficients. The second assumption generalizes the usual one in the sense that it is formulated as a joint condition for the drift and the diffusion term. The main difficulties concern the construction of the first and second order adjoint processes by solving backward equations on an unbounded time interval. The first adjoint process is characterized as a solution to a backward SDE, which is well-posed thanks to a duality argument. The second one can be defined via another duality relation written in terms of the Hamiltonian of the system and linearized state equation. Some known models verifying the joint monotonicity assumption are discussed as well

    H ? filtering for stochastic singular fuzzy systems with time-varying delay

    Get PDF
    This paper considers the H? filtering problem for stochastic singular fuzzy systems with timevarying delay. We assume that the state and measurement are corrupted by stochastic uncertain exogenous disturbance and that the system dynamic is modeled by Ito-type stochastic differential equations. Based on an auxiliary vector and an integral inequality, a set of delay-dependent sufficient conditions is established, which ensures that the filtering error system is e?t - weighted integral input-to-state stable in mean (iISSiM). A fuzzy filter is designed such that the filtering error system is impulse-free, e?t -weighted iISSiM and the H? attenuation level from disturbance to estimation error is belowa prescribed scalar.Aset of sufficient conditions for the solvability of the H? filtering problem is obtained in terms of a new type of Lyapunov function and a set of linear matrix inequalities. Simulation examples are provided to illustrate the effectiveness of the proposed filtering approach developed in this paper
    corecore