8 research outputs found

    Discriminative Video Representation Learning

    Get PDF
    Representation learning is a fundamental research problem in the area of machine learning, refining the raw data to discover representations needed for various applications. However, real-world data, particularly video data, is neither mathematically nor computationally convenient to process due to its semantic redundancy and complexity. Video data, as opposed to images, includes temporal correlation and motion dynamics, but the ground truth label is normally limited to category labels, which makes the video representation learning a challenging problem. To this end, this thesis addresses the problem of video representation learning, specifically discriminative video representation learning, which focuses on capturing useful data distributions and reliable feature representations improving the performance of varied downstream tasks. We argue that neither all frames in one video nor all dimensions in one feature vector are useful and should be equally treated for video representation learning. Based on this argument, several novel algorithms are investigated in this thesis under multiple application scenarios, such as action recognition, action detection and one-class video anomaly detection. These proposed video representation learning methods produce discriminative video features in both deep and non-deep learning setups. Specifically, they are presented in the form of: 1) an early fusion layer that adopts a temporal ranking SVM formulation, agglomerating several optical flow images from consecutive frames into a novel compact representation, named as dynamic optical flow images; 2) an intermediate feature aggregation layer that applies weakly-supervised contrastive learning techniques, learning discriminative video representations via contrasting positive and negative samples from a sequence; 3) a new formulation for one-class feature learning that learns a set of discriminative subspaces with orthonormal hyperplanes to flexibly bound the one-class data distribution using Riemannian optimisation methods. We provide extensive experiments to gain intuitions into why the learned representations are discriminative and useful. All the proposed methods in this thesis are evaluated on standard publicly available benchmarks, demonstrating state-of-the-art performance
    corecore