659 research outputs found

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Application of Recursive Algorithm on Shamir's Scheme Reconstruction for Cheating Detection and Identification

    Get PDF
    Information data protection is necessary to ward off and overcome various fraud attacks that may be encountered. A secret sharing scheme that implements cryptographic methods intends to maintain the security of confidential data by a group of trusted parties is the answer. In this paper, we choose the application of recursive algorithm on Shamir-based linear scheme as the primary method. In the secret reconstruction stage and since the beginning of the share distribution stage, these algorithms have been integrated by relying on a detection parameter to ensure that the secret value sought is valid. Although the obtained scheme will be much simpler because it utilizes the Vandermonde matrix structure, the security aspect of this scheme is not reduced. Indeed, it is supported by two detection parameters formulated from a recursive algorithm to detect cheating and identify the cheater(s). Therefore, this scheme is guaranteed to be unconditionally secure and has a high time efficiency (polynomial running time)

    Broadcast and Verifiable Secret Sharing: New Security Models and Round Optimal Constructions

    Get PDF
    Broadcast and verifiable secret sharing (VSS) are central building blocks for secure multi-party computation. These protocols are required to be resilient against a Byzantine adversary who controls at most t out of the n parties running the protocol. In this dissertation, we consider the design of fault-tolerant protocols for broadcast and verifiable secret sharing with stronger security guarantees and improved round complexity. Broadcast allows a party to send the same message to all parties, and all parties are assured they have received identical messages. Given a public-key infrastructure (PKI) and digital signatures, it is possible to construct broadcast protocols tolerating any number of corrupted parties. We address two important issues related to broadcast: (1) Almost all existing protocols do not distinguish between corrupted parties (who do not follow the protocol) and honest parties whose secret (signing) keys have been compromised (but who continue to behave honestly); (2) all existing protocols for broadcast are insecure against an adaptive adversary who can choose which parties to corrupt as the protocol progresses. We propose new security models that capture these issues, and present tight feasibility and impossibility results. In the problem of verifiable secret sharing, there is a designated player who shares a secret during an initial sharing phase such that the secret is hidden from an adversary that corrupts at most t parties. In a subsequent reconstruction phase of the protocol, a unique secret, well-defined by the view of honest players in the sharing phase, is reconstructed. The round complexity of VSS protocols is a very important metric of their efficiency. We show two improvements regarding the round complexity of information-theoretic VSS. First, we construct an efficient perfectly secure VSS protocol tolerating t < n/3 corrupted parties that is simultaneously optimal in both the number of rounds and the number of invocations of broadcast. Second, we construct a statistically secure VSS protocol tolerating t < n/2 corrupted parties that has optimal round complexity, and an efficient statistical VSS protocol tolerating t < n/2 corrupted parties that requires one additional round

    Distributed Key Generation for the Internet

    Get PDF
    Although distributed key generation (DKG) has been studied for some time, it has never been examined outside of the synchronous setting. We present the first realistic DKG architecture for use over the Internet. We propose a practical system model and define an efficient verifiable secret sharing scheme in it. We observe the necessity of Byzantine agreement for asynchronous DKG and analyze the difficulty of using a randomized protocol for it. Using our verifiable secret sharing scheme and a leader-based agreement protocol, we then design a DKG protocol for public-key cryptography. Finally, along with traditional proactive security, we also introduce group modification primitives in our system.
    • …
    corecore