127,061 research outputs found

    Parameterized Algorithms for Load Coloring Problem

    Full text link
    One way to state the Load Coloring Problem (LCP) is as follows. Let G=(V,E)G=(V,E) be graph and let f:V{red,blue}f:V\rightarrow \{{\rm red}, {\rm blue}\} be a 2-coloring. An edge eEe\in E is called red (blue) if both end-vertices of ee are red (blue). For a 2-coloring ff, let rfr'_f and bfb'_f be the number of red and blue edges and let μf(G)=min{rf,bf}\mu_f(G)=\min\{r'_f,b'_f\}. Let μ(G)\mu(G) be the maximum of μf(G)\mu_f(G) over all 2-colorings. We introduce the parameterized problem kk-LCP of deciding whether μ(G)k\mu(G)\ge k, where kk is the parameter. We prove that this problem admits a kernel with at most 7k7k. Ahuja et al. (2007) proved that one can find an optimal 2-coloring on trees in polynomial time. We generalize this by showing that an optimal 2-coloring on graphs with tree decomposition of width tt can be found in time O(2t)O^*(2^t). We also show that either GG is a Yes-instance of kk-LCP or the treewidth of GG is at most 2k2k. Thus, kk-LCP can be solved in time $O^*(4^k).

    Multimodal Convolutional Neural Networks for Matching Image and Sentence

    Full text link
    In this paper, we propose multimodal convolutional neural networks (m-CNNs) for matching image and sentence. Our m-CNN provides an end-to-end framework with convolutional architectures to exploit image representation, word composition, and the matching relations between the two modalities. More specifically, it consists of one image CNN encoding the image content, and one matching CNN learning the joint representation of image and sentence. The matching CNN composes words to different semantic fragments and learns the inter-modal relations between image and the composed fragments at different levels, thus fully exploit the matching relations between image and sentence. Experimental results on benchmark databases of bidirectional image and sentence retrieval demonstrate that the proposed m-CNNs can effectively capture the information necessary for image and sentence matching. Specifically, our proposed m-CNNs for bidirectional image and sentence retrieval on Flickr30K and Microsoft COCO databases achieve the state-of-the-art performances.Comment: Accepted by ICCV 201

    Biochemical network matching and composition

    Get PDF
    This paper looks at biochemical network matching and compositio

    Parameterized Algorithms and Data Reduction for Safe Convoy Routing

    Get PDF
    We study a problem that models safely routing a convoy through a transportation network, where any vertex adjacent to the travel path of the convoy requires additional precaution: Given a graph G=(V,E), two vertices s,t in V, and two integers k,l, we search for a simple s-t-path with at most k vertices and at most l neighbors. We study the problem in two types of transportation networks: graphs with small crossing number, as formed by road networks, and tree-like graphs, as formed by waterways. For graphs with constant crossing number, we provide a subexponential 2^O(sqrt n)-time algorithm and prove a matching lower bound. We also show a polynomial-time data reduction algorithm that reduces any problem instance to an equivalent instance (a so-called problem kernel) of size polynomial in the vertex cover number of the input graph. In contrast, we show that the problem in general graphs is hard to preprocess. Regarding tree-like graphs, we obtain a 2^O(tw) * l^2 * n-time algorithm for graphs of treewidth tw, show that there is no problem kernel with size polynomial in tw, yet show a problem kernel with size polynomial in the feedback edge number of the input graph
    corecore