53,507 research outputs found

    Fast Consensus under Eventually Stabilizing Message Adversaries

    Full text link
    This paper is devoted to deterministic consensus in synchronous dynamic networks with unidirectional links, which are under the control of an omniscient message adversary. Motivated by unpredictable node/system initialization times and long-lasting periods of massive transient faults, we consider message adversaries that guarantee periods of less erratic message loss only eventually: We present a tight bound of 2D+12D+1 for the termination time of consensus under a message adversary that eventually guarantees a single vertex-stable root component with dynamic network diameter DD, as well as a simple algorithm that matches this bound. It effectively halves the termination time 4D+14D+1 achieved by an existing consensus algorithm, which also works under our message adversary. We also introduce a generalized, considerably stronger variant of our message adversary, and show that our new algorithm, unlike the existing one, still works correctly under it.Comment: 13 pages, 5 figures, updated reference

    Measuring and mitigating AS-level adversaries against Tor

    Full text link
    The popularity of Tor as an anonymity system has made it a popular target for a variety of attacks. We focus on traffic correlation attacks, which are no longer solely in the realm of academic research with recent revelations about the NSA and GCHQ actively working to implement them in practice. Our first contribution is an empirical study that allows us to gain a high fidelity snapshot of the threat of traffic correlation attacks in the wild. We find that up to 40% of all circuits created by Tor are vulnerable to attacks by traffic correlation from Autonomous System (AS)-level adversaries, 42% from colluding AS-level adversaries, and 85% from state-level adversaries. In addition, we find that in some regions (notably, China and Iran) there exist many cases where over 95% of all possible circuits are vulnerable to correlation attacks, emphasizing the need for AS-aware relay-selection. To mitigate the threat of such attacks, we build Astoria--an AS-aware Tor client. Astoria leverages recent developments in network measurement to perform path-prediction and intelligent relay selection. Astoria reduces the number of vulnerable circuits to 2% against AS-level adversaries, under 5% against colluding AS-level adversaries, and 25% against state-level adversaries. In addition, Astoria load balances across the Tor network so as to not overload any set of relays.Comment: Appearing at NDSS 201

    Practical Attacks Against Graph-based Clustering

    Full text link
    Graph modeling allows numerous security problems to be tackled in a general way, however, little work has been done to understand their ability to withstand adversarial attacks. We design and evaluate two novel graph attacks against a state-of-the-art network-level, graph-based detection system. Our work highlights areas in adversarial machine learning that have not yet been addressed, specifically: graph-based clustering techniques, and a global feature space where realistic attackers without perfect knowledge must be accounted for (by the defenders) in order to be practical. Even though less informed attackers can evade graph clustering with low cost, we show that some practical defenses are possible.Comment: ACM CCS 201
    • …
    corecore