692 research outputs found

    Spatial Mixing of Coloring Random Graphs

    Full text link
    We study the strong spatial mixing (decay of correlation) property of proper qq-colorings of random graph G(n,d/n)G(n, d/n) with a fixed dd. The strong spatial mixing of coloring and related models have been extensively studied on graphs with bounded maximum degree. However, for typical classes of graphs with bounded average degree, such as G(n,d/n)G(n, d/n), an easy counterexample shows that colorings do not exhibit strong spatial mixing with high probability. Nevertheless, we show that for qαd+βq\ge\alpha d+\beta with α>2\alpha>2 and sufficiently large β=O(1)\beta=O(1), with high probability proper qq-colorings of random graph G(n,d/n)G(n, d/n) exhibit strong spatial mixing with respect to an arbitrarily fixed vertex. This is the first strong spatial mixing result for colorings of graphs with unbounded maximum degree. Our analysis of strong spatial mixing establishes a block-wise correlation decay instead of the standard point-wise decay, which may be of interest by itself, especially for graphs with unbounded degree

    Lower Bounds on the Ground State Entropy of the Potts Antiferromagnet on Slabs of the Simple Cubic Lattice

    Full text link
    We calculate rigorous lower bounds for the ground state degeneracy per site, WW, of the qq-state Potts antiferromagnet on slabs of the simple cubic lattice that are infinite in two directions and finite in the third and that thus interpolate between the square (sq) and simple cubic (sc) lattices. We give a comparison with large-qq series expansions for the sq and sc lattices and also present numerical comparisons.Comment: 7 pages, late

    Lower Bounds and Series for the Ground State Entropy of the Potts Antiferromagnet on Archimedean Lattices and their Duals

    Full text link
    We prove a general rigorous lower bound for W(Λ,q)=exp(S0(Λ,q)/kB)W(\Lambda,q)=\exp(S_0(\Lambda,q)/k_B), the exponent of the ground state entropy of the qq-state Potts antiferromagnet, on an arbitrary Archimedean lattice Λ\Lambda. We calculate large-qq series expansions for the exact Wr(Λ,q)=q1W(Λ,q)W_r(\Lambda,q)=q^{-1}W(\Lambda,q) and compare these with our lower bounds on this function on the various Archimedean lattices. It is shown that the lower bounds coincide with a number of terms in the large-qq expansions and hence serve not just as bounds but also as very good approximations to the respective exact functions Wr(Λ,q)W_r(\Lambda,q) for large qq on the various lattices Λ\Lambda. Plots of Wr(Λ,q)W_r(\Lambda,q) are given, and the general dependence on lattice coordination number is noted. Lower bounds and series are also presented for the duals of Archimedean lattices. As part of the study, the chromatic number is determined for all Archimedean lattices and their duals. Finally, we report calculations of chromatic zeros for several lattices; these provide further support for our earlier conjecture that a sufficient condition for Wr(Λ,q)W_r(\Lambda,q) to be analytic at 1/q=01/q=0 is that Λ\Lambda is a regular lattice.Comment: 39 pages, Revtex, 9 encapsulated postscript figures, to appear in Phys. Rev.

    Exact thresholds for Ising-Gibbs samplers on general graphs

    Get PDF
    We establish tight results for rapid mixing of Gibbs samplers for the Ferromagnetic Ising model on general graphs. We show that if (d1)tanhβ<1,(d-1)\tanh\beta<1, then there exists a constant C such that the discrete time mixing time of Gibbs samplers for the ferromagnetic Ising model on any graph of n vertices and maximal degree d, where all interactions are bounded by β\beta, and arbitrary external fields are bounded by CnlognCn\log n. Moreover, the spectral gap is uniformly bounded away from 0 for all such graphs, as well as for infinite graphs of maximal degree d. We further show that when dtanhβ<1d\tanh\beta<1, with high probability over the Erdos-Renyi random graph G(n,d/n)G(n,d/n), it holds that the mixing time of Gibbs samplers is n1+Θ(1/loglogn).n^{1+\Theta({1}/{\log\log n})}. Both results are tight, as it is known that the mixing time for random regular and Erdos-Renyi random graphs is, with high probability, exponential in n when (d1)tanhβ>1(d-1)\tanh\beta>1, and dtanhβ>1d\tanh\beta>1, respectively. To our knowledge our results give the first tight sufficient conditions for rapid mixing of spin systems on general graphs. Moreover, our results are the first rigorous results establishing exact thresholds for dynamics on random graphs in terms of spatial thresholds on trees.Comment: Published in at http://dx.doi.org/10.1214/11-AOP737 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore