1,299 research outputs found

    Adaptive Representations for Tracking Breaking News on Twitter

    Full text link
    Twitter is often the most up-to-date source for finding and tracking breaking news stories. Therefore, there is considerable interest in developing filters for tweet streams in order to track and summarize stories. This is a non-trivial text analytics task as tweets are short, and standard retrieval methods often fail as stories evolve over time. In this paper we examine the effectiveness of adaptive mechanisms for tracking and summarizing breaking news stories. We evaluate the effectiveness of these mechanisms on a number of recent news events for which manually curated timelines are available. Assessments based on ROUGE metrics indicate that an adaptive approaches are best suited for tracking evolving stories on Twitter.Comment: 8 Pag

    Video Stream Retrieval of Unseen Queries using Semantic Memory

    Get PDF
    Retrieval of live, user-broadcast video streams is an under-addressed and increasingly relevant challenge. The on-line nature of the problem requires temporal evaluation and the unforeseeable scope of potential queries motivates an approach which can accommodate arbitrary search queries. To account for the breadth of possible queries, we adopt a no-example approach to query retrieval, which uses a query's semantic relatedness to pre-trained concept classifiers. To adapt to shifting video content, we propose memory pooling and memory welling methods that favor recent information over long past content. We identify two stream retrieval tasks, instantaneous retrieval at any particular time and continuous retrieval over a prolonged duration, and propose means for evaluating them. Three large scale video datasets are adapted to the challenge of stream retrieval. We report results for our search methods on the new stream retrieval tasks, as well as demonstrate their efficacy in a traditional, non-streaming video task.Comment: Presented at BMVC 2016, British Machine Vision Conference, 201

    Leverage Financial News to Predict Stock Price Movements Using Word Embeddings and Deep Neural Networks

    Full text link
    Financial news contains useful information on public companies and the market. In this paper we apply the popular word embedding methods and deep neural networks to leverage financial news to predict stock price movements in the market. Experimental results have shown that our proposed methods are simple but very effective, which can significantly improve the stock prediction accuracy on a standard financial database over the baseline system using only the historical price information.Comment: 5 pages, 2 figures, technical repor

    Learning Graph Embeddings for Compositional Zero-shot Learning

    Get PDF
    In compositional zero-shot learning, the goal is to recognize unseen compositions (e.g. old dog) of observed visual primitives states (e.g. old, cute) and objects (e.g. car, dog) in the training set. This is challenging because the same state can for example alter the visual appearance of a dog drastically differently from a car. As a solution, we propose a novel graph formulation called Compositional Graph Embedding (CGE) that learns image features, compositional classifiers, and latent representations of visual primitives in an end-to-end manner. The key to our approach is exploiting the dependency between states, objects, and their compositions within a graph structure to enforce the relevant knowledge transfer from seen to unseen compositions. By learning a joint compatibility that encodes semantics between concepts, our model allows for generalization to unseen compositions without relying on an external knowledge base like WordNet. We show that in the challenging generalized compositional zero-shot setting our CGE significantly outperforms the state of the art on MIT-States and UT-Zappos. We also propose a new benchmark for this task based on the recent GQA dataset.Comment: Accepted in IEEE CVPR 202

    Spatial-Aware Object Embeddings for Zero-Shot Localization and Classification of Actions

    Get PDF
    We aim for zero-shot localization and classification of human actions in video. Where traditional approaches rely on global attribute or object classification scores for their zero-shot knowledge transfer, our main contribution is a spatial-aware object embedding. To arrive at spatial awareness, we build our embedding on top of freely available actor and object detectors. Relevance of objects is determined in a word embedding space and further enforced with estimated spatial preferences. Besides local object awareness, we also embed global object awareness into our embedding to maximize actor and object interaction. Finally, we exploit the object positions and sizes in the spatial-aware embedding to demonstrate a new spatio-temporal action retrieval scenario with composite queries. Action localization and classification experiments on four contemporary action video datasets support our proposal. Apart from state-of-the-art results in the zero-shot localization and classification settings, our spatial-aware embedding is even competitive with recent supervised action localization alternatives.Comment: ICC
    corecore