190 research outputs found

    (Un)decidable Problems about Reachability of Quantum Systems

    Full text link
    We study the reachability problem of a quantum system modelled by a quantum automaton. The reachable sets are chosen to be boolean combinations of (closed) subspaces of the state space of the quantum system. Four different reachability properties are considered: eventually reachable, globally reachable, ultimately forever reachable, and infinitely often reachable. The main result of this paper is that all of the four reachability properties are undecidable in general; however, the last three become decidable if the reachable sets are boolean combinations without negation

    Vector Reachability Problem in SL(2,Z)\mathrm{SL}(2,\mathbb{Z})

    Get PDF
    The decision problems on matrices were intensively studied for many decades as matrix products play an essential role in the representation of various computational processes. However, many computational problems for matrix semigroups are inherently difficult to solve even for problems in low dimensions and most matrix semigroup problems become undecidable in general starting from dimension three or four. This paper solves two open problems about the decidability of the vector reachability problem over a finitely generated semigroup of matrices from SL(2,Z)\mathrm{SL}(2,\mathbb{Z}) and the point to point reachability (over rational numbers) for fractional linear transformations, where associated matrices are from SL(2,Z)\mathrm{SL}(2,\mathbb{Z}). The approach to solving reachability problems is based on the characterization of reachability paths between points which is followed by the translation of numerical problems on matrices into computational and combinatorial problems on words and formal languages. We also give a geometric interpretation of reachability paths and extend the decidability results to matrix products represented by arbitrary labelled directed graphs. Finally, we will use this technique to prove that a special case of the scalar reachability problem is decidable

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Positivity Problems for Low-Order Linear Recurrence Sequences

    Full text link
    We consider two decision problems for linear recurrence sequences (LRS) over the integers, namely the Positivity Problem (are all terms of a given LRS positive?) and the Ultimate Positivity Problem} (are all but finitely many terms of a given LRS positive?). We show decidability of both problems for LRS of order 5 or less, with complexity in the Counting Hierarchy for Positivity, and in polynomial time for Ultimate Positivity. Moreover, we show by way of hardness that extending the decidability of either problem to LRS of order 6 would entail major breakthroughs in analytic number theory, more precisely in the field of Diophantine approximation of transcendental numbers

    Decidability of the Membership Problem for 2×22\times 2 integer matrices

    Get PDF
    The main result of this paper is the decidability of the membership problem for 2×22\times 2 nonsingular integer matrices. Namely, we will construct the first algorithm that for any nonsingular 2×22\times 2 integer matrices M1,…,MnM_1,\dots,M_n and MM decides whether MM belongs to the semigroup generated by {M1,…,Mn}\{M_1,\dots,M_n\}. Our algorithm relies on a translation of the numerical problem on matrices into combinatorial problems on words. It also makes use of some algebraical properties of well-known subgroups of GL(2,Z)\mathrm{GL}(2,\mathbb{Z}) and various new techniques and constructions that help to limit an infinite number of possibilities by reducing them to the membership problem for regular languages

    Approximated Symbolic Computations over Hybrid Automata

    Get PDF
    Hybrid automata are a natural framework for modeling and analyzing systems which exhibit a mixed discrete continuous behaviour. However, the standard operational semantics defined over such models implicitly assume perfect knowledge of the real systems and infinite precision measurements. Such assumptions are not only unrealistic, but often lead to the construction of misleading models. For these reasons we believe that it is necessary to introduce more flexible semantics able to manage with noise, partial information, and finite precision instruments. In particular, in this paper we integrate in a single framework based on approximated semantics different over and under-approximation techniques for hybrid automata. Our framework allows to both compare, mix, and generalize such techniques obtaining different approximated reachability algorithms.Comment: In Proceedings HAS 2013, arXiv:1308.490

    The Identity Correspondence Problem and its Applications

    Get PDF
    In this paper we study several closely related fundamental problems for words and matrices. First, we introduce the Identity Correspondence Problem (ICP): whether a finite set of pairs of words (over a group alphabet) can generate an identity pair by a sequence of concatenations. We prove that ICP is undecidable by a reduction of Post's Correspondence Problem via several new encoding techniques. In the second part of the paper we use ICP to answer a long standing open problem concerning matrix semigroups: "Is it decidable for a finitely generated semigroup S of square integral matrices whether or not the identity matrix belongs to S?". We show that the problem is undecidable starting from dimension four even when the number of matrices in the generator is 48. From this fact, we can immediately derive that the fundamental problem of whether a finite set of matrices generates a group is also undecidable. We also answer several question for matrices over different number fields. Apart from the application to matrix problems, we believe that the Identity Correspondence Problem will also be useful in identifying new areas of undecidable problems in abstract algebra, computational questions in logic and combinatorics on words.Comment: We have made some proofs clearer and fixed an important typo from the published journal version of this article, see footnote 3 on page 1
    • …
    corecore