20 research outputs found

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    Molecular Imaging

    Get PDF
    The present book gives an exceptional overview of molecular imaging. Practical approach represents the red thread through the whole book, covering at the same time detailed background information that goes very deep into molecular as well as cellular level. Ideas how molecular imaging will develop in the near future present a special delicacy. This should be of special interest as the contributors are members of leading research groups from all over the world

    Development and Validation of a Computational Tool for Fusion Reactors\u27 System Analysis

    Get PDF
    On the roadmap to fusion energy the development and the operation of a demonstration power plant (DEMO) is the next step after ITER, a key facility currently devoted to the exploration of the physics aspects for self-sustained fusion plasmas with sizes and fusion power comparable to those attended in fusion power plants (FPP). Fusion systems codes are essential computational tools aimed to simulate the physics and the engineering features of a FPP. The main objective of a system code is to find one (or more) reactor configurations which simultaneously comply with physics operational limits, engineering constraints and net electric output requirements. As such simulation tools need to scope many design solutions over a large parameter phase space, they rely on rather basic physics and engineering models (mostly at zero or one-dimensional level) and on a relatively large number of input specifications. Within the conceptual design of a FPP, systems codes are interfaced to the detailed transport codes and engineering platforms, which operate in much larger time scales. To fill the gap between systems and the detailed transport and engineering codes the high-fidelity system/design tool MIRA (Modular Integrated Reactor Analysis) has been developed. MIRA relies on a modular structure and provides a refined FPP system analysis, with the primary goal of generating a more robust plant baseline. It incorporates into a unique computing environment a mathematical algorithm for the utmost tokamak fusion problems, including two-dimensional plasma magnetic equilibrium and core physics, transport of neutron and photon radiations emitted from the plasma and electromagnetic and engineering characterization of the toroidal field (TF) and poloidal field (PF) field coil systems. Most of the implemented modules rely on higher spatial resolution compared to presently available system codes, such as PROCESS. The multiphysics MIRA approach has been applied to the DEMO 2015 baseline, generated by means of the PROCESS system code. The analysis has been carried out by taking an identical set of input assumptions and requirements (e.g. same fusion power, major radius and aspect ratio) and observing the response on certain figures of merit. This verification study has featured the violation of some constraining conditions imposed on plasma safety factor, TF ripple and plasma burn time. The DEMO 2015 baseline has been found not in line with all the imposed requirements and constraints, hence necessitates a set of active measures on some of the input parameters. Such measures have been reported in form of parameter scans, where three variables have been identified, such as plasma internal inductance, blanket breeding zone inboard thickness and vacuum vessel/TF coil gap radial outboard width. The addressed sensitivity analyses have shown non-trivial inter-parametric dependencies, never explored in fusion system analyses. For instance, large influences of the plasma internal inductance on safety factor, plasma shape, density and temperature features, peak divertor flux and plasma burn time have been observed. Moreover, an optimal overall breeding blanket + TF coil inboard width has been observed with respect to the maximization of the plasma burn time, representing a meeting point between neutronic tritium breeding and technological limits in central solenoid and TF coils superconducting cables. These outcomes have inspired important changes in the way of designing a tokamak reactor like DEMO, where more extended analyses of the key physics and engineering aspects of the reactor can speed up and improve the design process of a FPP
    corecore