211 research outputs found

    Gaussian Quantum Information

    Get PDF
    The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography and quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely powerful alternative approach to quantum information processing. This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements. Interestingly, such a restriction to the Gaussian realm comes with various benefits, since on the theoretical side, simple analytical tools are available and, on the experimental side, optical components effecting Gaussian processes are readily available in the laboratory. Yet, Gaussian quantum information processing opens the way to a wide variety of tasks and applications, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination. This review reports on the state of the art in this field, ranging from the basic theoretical tools and landmark experimental realizations to the most recent successful developments.Comment: 51 pages, 7 figures, submitted to Reviews of Modern Physic

    Secret-key rates and privacy leakage in biometric systems

    Get PDF
    In this thesis both the generation of secret keys from biometric data and the binding of secret keys to biometric data are investigated. These secret keys can be used to regulate access to sensitive data, services, and environments. In a biometric secrecy system a secret key is generated or chosen during an enrollment procedure in which biometric data are observed for the first time. This key is to be reconstructed after these biometric data are observed for the second time when authentication is required. Since biometric measurements are typically noisy, reliable biometric secrecy systems also extract so-called helper data from the biometric observation at the time of enrollment. These helper data facilitate reliable reconstruction of the secret key in the authentication process. Since the helper data are assumed to be public, they should not contain information about the secret key. We say that the secrecy leakage should be negligible. Important parameters of biometric key-generation and key-binding systems include the size of the generated or chosen secret key and the information that the helper data contain (leak) about the biometric observation. This latter parameter is called privacy leakage. Ideally the privacy leakage should be small, to prevent the biometric data of an individual from being compromised. Moreover, the secret-key length (also characterized by the secret-key rate) should be large to minimize the probability that the secret key is guessed and unauthorized access is granted. The first part of this thesis mainly focuses on the fundamental trade-off between the secret-key rate and the privacy-leakage rate in biometric secret-generation and secretbinding systems. This trade-off is studied from an information-theoretical perspective for four biometric settings. The first setting is the classical secret-generation setting as proposed by Maurer [1993] and Ahlswede and Csiszár [1993]. For this setting the achievable secret-key vs. privacy-leakage rate region is determined in this thesis. In the second setting the secret key is not generated by the terminals, but independently chosen during enrollment (key binding). Also for this setting the region of achievable secret-key vs. privacy-leakage rate pairs is determined. In settings three and four zero-leakage systems are considered. In these systems the public message should contain only a negligible amount of information about both the secret key and the biometric enrollment sequence. To achieve this, a private key is needed, which can be observed only by the two terminals. Again both the secret generation setting and chosen secret setting are considered. For these two cases the regions of achievable secret-key vs. private-key rate pairs are determined. For all four settings two notions of leakage are considered. Depending on whether one looks at secrecy and privacy leakage separately or in combination, unconditional or conditional privacy leakage is considered. Here unconditional leakage corresponds to the mutual information between the helper data and the biometric enrollment sequence, while the conditional leakage relates to the conditional version of this mutual information, given the secret. The second part of the thesis focuses on the privacy- and secrecy-leakage analysis of the fuzzy commitment scheme. Fuzzy commitment, proposed by Juels and Wattenberg [1999], is, in fact, a particular realization of a binary biometric secrecy system with a chosen secret key. In this scheme the helper data are constructed as a codeword from an error-correcting code, used to encode a chosen secret, masked with the biometric sequence that has been observed during enrollment. Since this scheme is not privacy preserving in the conditional privacy-leakage sense, the unconditional privacy-leakage case is investigated. Four cases of biometric sources are considered, i.e. memoryless and totally-symmetric biometric sources, memoryless and input-symmetric biometric sources, memoryless biometric sources, and stationary and ergodic biometric sources. For the first two cases the achievable rate-leakage regions are determined. In these cases the secrecy leakage rate need not be positive. For the other two cases only outer bounds on achievable rate-leakage regions are found. These bounds, moreover, are sharpened for fuzzy commitment based on systematic parity-check codes. Using the fundamental trade-offs found in the first part of this thesis, it is shown that fuzzy commitment is only optimal for memoryless totally-symmetric biometric sources and only at the maximum secret-key rate. Moreover, it is demonstrated that for memoryless and stationary ergodic biometric sources, which are not input-symmetric, the fuzzy commitment scheme leaks information on both the secret key and the biometric data. Biometric sequences have an often unknown statistical structure (model) that can be quite complex. The last part of this dissertation addresses the problem of finding the maximum a posteriori (MAP) model for a pair of observed biometric sequences and the problem of estimating the maximum secret-key rate from these sequences. A universal source coding procedure called the Context-TreeWeighting (CTW) method [1995] can be used to find this MAP model. In this thesis a procedure that determines the MAP model, based on the so-called beta-implementation of the CTW method, is proposed. Moreover, CTW methods are used to compress the biometric sequences and sequence pairs in order to estimate the mutual information between the sequences. However, CTW methods were primarily developed for compressing onedimensional sources, while biometric data are often modeled as two-dimensional processes. Therefore it is proved here that the entropy of a stationary two-dimensional source can be expressed as a limit of a series of conditional entropies. This result is also extended to the conditional entropy of one two-dimensional source given another one. As a consequence entropy and mutual information estimates can be obtained from CTW methods using properly-chosen templates. Using such techniques estimates of the maximum secret-key rate for physical unclonable functions (PUFs) are determined from a data-set of observed sequences. PUFs can be regarded as inanimate analogues of biometrics

    Quantum Computers and Quantum Coherence

    Full text link
    If the states of spins in solids can be created, manipulated, and measured at the single-quantum level, an entirely new form of information processing, quantum computing, will be possible. We first give an overview of quantum information processing, showing that the famous Shor speedup of integer factoring is just one of a host of important applications for qubits, including cryptography, counterfeit protection, channel capacity enhancement, distributed computing, and others. We review our proposed spin-quantum dot architecture for a quantum computer, and we indicate a variety of first generation materials, optical, and electrical measurements which should be considered. We analyze the efficiency of a two-dot device as a transmitter of quantum information via the ballistic propagation of carriers in a Fermi sea.Comment: 13 pages, latex, one eps figure. Prepared for special issue of J. Mag. Magn. Matl., "Magnetism beyond 2000". Version 2: small revisions and correction

    Commitment and Oblivious Transfer in the Bounded Storage Model with Errors

    Get PDF
    The bounded storage model restricts the memory of an adversary in a cryptographic protocol, rather than restricting its computational power, making information theoretically secure protocols feasible. We present the first protocols for commitment and oblivious transfer in the bounded storage model with errors, i.e., the model where the public random sources available to the two parties are not exactly the same, but instead are only required to have a small Hamming distance between themselves. Commitment and oblivious transfer protocols were known previously only for the error-free variant of the bounded storage model, which is harder to realize

    Reexamination of Quantum Bit Commitment: the Possible and the Impossible

    Full text link
    Bit commitment protocols whose security is based on the laws of quantum mechanics alone are generally held to be impossible. In this paper we give a strengthened and explicit proof of this result. We extend its scope to a much larger variety of protocols, which may have an arbitrary number of rounds, in which both classical and quantum information is exchanged, and which may include aborts and resets. Moreover, we do not consider the receiver to be bound to a fixed "honest" strategy, so that "anonymous state protocols", which were recently suggested as a possible way to beat the known no-go results are also covered. We show that any concealing protocol allows the sender to find a cheating strategy, which is universal in the sense that it works against any strategy of the receiver. Moreover, if the concealing property holds only approximately, the cheat goes undetected with a high probability, which we explicitly estimate. The proof uses an explicit formalization of general two party protocols, which is applicable to more general situations, and a new estimate about the continuity of the Stinespring dilation of a general quantum channel. The result also provides a natural characterization of protocols that fall outside the standard setting of unlimited available technology, and thus may allow secure bit commitment. We present a new such protocol whose security, perhaps surprisingly, relies on decoherence in the receiver's lab.Comment: v1: 26 pages, 4 eps figures. v2: 31 pages, 5 eps figures; replaced with published version; title changed to comply with puzzling Phys. Rev. regulations; impossibility proof extended to protocols with infinitely many rounds or a continuous communication tree; security proof of decoherence monster protocol expanded; presentation clarifie

    Secure Computation from Elastic Noisy Channels

    Get PDF
    Noisy channels enable unconditionally secure multi-party computation even against parties with unbounded computational power. But inaccurate noise estimation and adversarially determined channel characteristics render known protocols insecure. Such channels are known as unreliable noisy channels. A large body of work in the last three decades has attempted to construct secure multi-party computation from unreliable noisy channels, but this previous work has not been able to deal with most parameter settings. In this work, we study a form of unreliable noisy channels where the unreliability is one-sided, that we name elastic noisy channels: thus, in one form of elastic noisy channel, an adversarial receiver can increase the reception reliability unbeknown to the sender, but the sender cannot change the channel characteristic. Our work shows feasibility results for a large set of parameters for the elastic binary symmetric channel, significantly improving upon the best results obtainable using prior techniques. In a key departure from existing approaches, we use a more elemental correlated private randomness as an intermediate cryptographic primitive that exhibits only a rudimentary essence of oblivious transfer. Toward this direction, we introduce new information-theoretic techniques that are potentially applicable to other cryptographic settings involving unreliable noisy channels
    • …
    corecore