298 research outputs found

    The Parametric Ordinal-Recursive Complexity of Post Embedding Problems

    Full text link
    Post Embedding Problems are a family of decision problems based on the interaction of a rational relation with the subword embedding ordering, and are used in the literature to prove non multiply-recursive complexity lower bounds. We refine the construction of Chambart and Schnoebelen (LICS 2008) and prove parametric lower bounds depending on the size of the alphabet.Comment: 16 + vii page

    On some modifications and applications of the post correspondence problem

    Get PDF
    The Post Correspondence Problem was introduced by Emil Post in 1946. The problem considers pairs of lists of sequences of symbols, or words, where each word has its place on the list determined by its index. The Post Correspondence Problem asks does there exist a sequence of indices so that, when we write the words in the order of the sequence as single words from both lists, the two resulting words are equal. Post proved the problem to be undecidable, that is, no algorithm deciding it can exist. A variety of restrictions and modifications have been introduced to the original formulation of the problem, that have then been shown to be either decidable or undecidable. Both the original Post Correspondence Problem and its modifications have been widely used in proving other decision problems undecidable. In this thesis we consider some modifications of the Post Correspondence Problem as well as some applications of it in undecidability proofs. We consider a modification for sequences of indices that are infinite to two directions. We also consider a modification to the original Post Correspondence Problem where instead of the words being equal for a sequence of indices, we take two sequences that are conjugates of each other. Two words are conjugates if we can write one word by taking the other and moving some part of that word from the end to the beginning. Both modifications are shown to be undecidable. We also use the Post Correspondence Problem and its modification for injective morphisms in proving two problems from formal language theory to be undecidable; the first problem is on special shuffling of words and the second problem on fixed points of rational functions

    On the decidability of semigroup freeness

    Full text link
    This paper deals with the decidability of semigroup freeness. More precisely, the freeness problem over a semigroup S is defined as: given a finite subset X of S, decide whether each element of S has at most one factorization over X. To date, the decidabilities of two freeness problems have been closely examined. In 1953, Sardinas and Patterson proposed a now famous algorithm for the freeness problem over the free monoid. In 1991, Klarner, Birget and Satterfield proved the undecidability of the freeness problem over three-by-three integer matrices. Both results led to the publication of many subsequent papers. The aim of the present paper is three-fold: (i) to present general results concerning freeness problems, (ii) to study the decidability of freeness problems over various particular semigroups (special attention is devoted to multiplicative matrix semigroups), and (iii) to propose precise, challenging open questions in order to promote the study of the topic.Comment: 46 pages. 1 table. To appear in RAIR

    Bottom-up and top-down tree transformations - a comparison

    Get PDF
    The top-down and bottom-up tree transducer are incomparable with respect to their transformation power. The difference between them is mainly caused by the different order in which they use the facilities of copying and nondeterminism. One can however define certain simple tree transformations, independent of the top-down/bottom-up distinction, such that each tree transformation, top-down or bottom-up, can be decomposed into a number of these simple transformations. This decomposition result is used to give simple proofs of composition results concerning bottom-up tree transformations.\ud \ud A new tree transformation model is introduced which generalizes both the top-down and the bottom-up tree transducer

    Decidable and undecidable problems about quantum automata

    Get PDF
    We study the following decision problem: is the language recognized by a quantum finite automaton empty or non-empty? We prove that this problem is decidable or undecidable depending on whether recognition is defined by strict or non-strict thresholds. This result is in contrast with the corresponding situation for probabilistic finite automata for which it is known that strict and non-strict thresholds both lead to undecidable problems.Comment: 10 page
    • …
    corecore