48,044 research outputs found

    Design approaches in technology enhanced learning

    Get PDF
    Design is a critical to the successful development of any interactive learning environment (ILE). Moreover, in technology enhanced learning (TEL), the design process requires input from many diverse areas of expertise. As such, anyone undertaking tool development is required to directly address the design challenge from multiple perspectives. We provide a motivation and rationale for design approaches for learning technologies that draws upon Simon's seminal proposition of Design Science (Simon, 1969). We then review the application of Design Experiments (Brown, 1992) and Design Patterns (Alexander et al., 1977) and argue that a patterns approach has the potential to address many of the critical challenges faced by learning technologists

    Developing Learning Trajectory For Enhancing Students’ Relational Thinking

    Get PDF
    Algebra is part of Mathematics learning in Indonesian curriculum. It takes one half of the teaching hours in senior high school, and one third in junior high school. However, the learning trajectory of Algebra needs to be improved because teachers teach computational thinking by applying paper-and-pencil strategy combining with the concepts-operations-example-drilling approach. Mathematics textbooks do not give enough guidance for teachers to conduct good activities in the classroom to promote algebraic thinking especially in the primary schools. To reach Indonesian Mathematics teaching goals, teachers should develop learning trajectories based on pedagogical and theoretical backgrounds. Teachers need to have knowledge of student’s developmental progressions and understanding of mathematics concepts and students’ thinking. Research shows that teachers’ knowledge of student’s mathematical development is related to their students’ achievement. In fostering a greater emphasis on algebraic thinking, teachers and textbooks need to work more closely together to develop a clearer learning trajectory. Having this algebraic thinking, students developed not only their own character of learning and thinking but also their attitude, attention and discipline. Key Words: Learning Trajectory, Relational Thinkin

    Defining Technology for Learning: Cognitive and Physical Tools of Inquiry

    Get PDF
    This essay explores definitions of technology and educational technology. The authors argue the following points: 1. Educational stakeholders, and the public at large, use the term technology as though it has a universally agreed upon definition. It does not, and how technology is defined matters. 2. For technology in schools to support student learning, it must to be defined in a way that describes technology as a tool for problem-solving. 3. Integration of technology, particularly when paired with teacher-centered practices, has the potential of reinforcing and heightening the negative consequences of a conception of learning that positions students as recipients of knowledge instead constructors of knowledge. Essay concludes with a call for leaders in the field of educational technology to provide guidance by adopting a definition that encapsulates the third point above

    Number sense : the underpinning understanding for early quantitative literacy

    Get PDF
    The fundamental meaning of Quantitative Literacy (QL) as the application of quantitative knowledge or reasoning in new/unfamiliar contexts is problematic because how we acquire knowledge, and transfer it to new situations, is not straightforward. This article argues that in the early development of QL, there is a specific corpus of numerical knowledge which learners need to integrate into their thinking, and to which teachers should attend. The paper is a rebuttal to historically prevalent (and simplistic) views that the terrain of early numerical understanding is little more than simple counting devoid of cognitive complexity. Rather, the knowledge upon which early QL develops comprises interdependent dimensions: Number Knowledge, Counting Skills and Principles, Nonverbal Calculation, Number Combinations and Story Problems - summarised as Number Sense. In order to derive the findings for this manuscript, a realist synthesis of recent Education and Psychology literature was conducted. The findings are of use not only when teaching very young children, but also when teaching learners who are experiencing learning difficulties through the absence of prerequisite numerical knowledge. As well distilling fundamental quantitative knowledge for teachers to integrate into practice, the review emphasises that improved pedagogy is less a function of literal applications of reported interventions, on the grounds of perceived efficacy elsewhere, but based in refinements of teachers' understandings. Because teachers need to adapt instructional sequences to the actual thinking and learning of learners in their charge, they need knowledge that allows them to develop their own theoretical understanding rather than didactic exhortations

    Affordances of spreadsheets in mathematical investigation: Potentialities for learning

    Get PDF
    This article, is concerned with the ways learning is shaped when mathematics problems are investigated in spreadsheet environments. It considers how the opportunities and constraints the digital media affords influenced the decisions the students made, and the direction of their enquiry pathway. How might the leraning trajectory unfold, and the learning process and mathematical understanding emerge? Will the spreadsheet, as the pedagogical medium, evoke learning in a distinctive manner? The article reports on an aspect of an ongoing study involving students as they engage mathematical investigative tasks through digital media, the spreadsheet in particular. In considers the affordances of this learning environment for primary-aged students

    Pre-Service Teachers’ Knowledge of Algebraic Thinking and the Characteristics of the Questions Posed for Students

    Get PDF
    In this study, we explored the relationship between the strength of pre-service teachers’ algebraic thinking and the characteristics of the questions they posed during cognitive interviews that focused on probing the algebraic thinking of middle school students. We developed a performance rubric to evaluate the strength of pre-service teachers’ algebraic thinking across 130 algebra-based tasks. We used an existing coding scheme found in the literature to analyze the characteristics of the questions pre-service teachers posed during clinical interviews. We found that pre-service teachers with higher algebraic thinking abilities were able to pose probing questions that uncovered student thinking through the use of follow up questions. In comparison, pre-service teachers with lower algebraic thinking abilities asked factual questions; moving from one question to the next without posing follow up questions to probe student thinking

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments
    corecore