47,502 research outputs found

    Energy levels and radiative rates for transitions in Cr-like Co IV and Ni V

    Full text link
    We report calculations of energy levels and radiative rates (AA-values) for transitions in Cr-like Co IV and Ni V. The quasi-relativistic Hartree-Fock (QRHF) code is adopted for calculating the data although GRASP (general-purpose relativistic atomic structure package) and flexible atomic code (FAC) have also been employed for comparison purposes. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST for a majority of the levels. However, there are discrepancies for a few levels of up to 3\%. The AA-values are listed for all significantly contributing E1, E2 and M1 transitions, and the corresponding lifetimes reported, although unfortunately no previous theoretical or experimental results exist to compare with our data.Comment: The paper will appear in ADNDT (2016) and in October 2015 on the we

    Emergent bipartiteness in a society of knights and knaves

    Get PDF
    We propose a simple model of a social network based on so-called knights-and-knaves puzzles. The model describes the formation of networks between two classes of agents where links are formed by agents introducing their neighbours to others of their own class. We show that if the proportion of knights and knaves is within a certain range, the network self-organizes to a perfectly bipartite state. However, if the excess of one of the two classes is greater than a threshold value, bipartiteness is not observed. We offer a detailed theoretical analysis for the behaviour of the model, investigate its behaviou r in the thermodynamic limit, and argue that it provides a simple example of a topology-driven model whose behaviour is strongly reminiscent of a first-order phase transitions far from equilibrium.Comment: 12 pages, 5 figure

    Bethe ansatz at q=0 and periodic box-ball systems

    Full text link
    A class of periodic soliton cellular automata is introduced associated with crystals of non-exceptional quantum affine algebras. Based on the Bethe ansatz at q=0, we propose explicit formulas for the dynamical period and the size of certain orbits under the time evolution in A^{(1)}_n case.Comment: 12 pages, Introduction expanded, Summary added and minor modifications mad

    You Cannot Fix What You Cannot Find! An Investigation of Fault Localization Bias in Benchmarking Automated Program Repair Systems

    Get PDF
    Properly benchmarking Automated Program Repair (APR) systems should contribute to the development and adoption of the research outputs by practitioners. To that end, the research community must ensure that it reaches significant milestones by reliably comparing state-of-the-art tools for a better understanding of their strengths and weaknesses. In this work, we identify and investigate a practical bias caused by the fault localization (FL) step in a repair pipeline. We propose to highlight the different fault localization configurations used in the literature, and their impact on APR systems when applied to the Defects4J benchmark. Then, we explore the performance variations that can be achieved by `tweaking' the FL step. Eventually, we expect to create a new momentum for (1) full disclosure of APR experimental procedures with respect to FL, (2) realistic expectations of repairing bugs in Defects4J, as well as (3) reliable performance comparison among the state-of-the-art APR systems, and against the baseline performance results of our thoroughly assessed kPAR repair tool. Our main findings include: (a) only a subset of Defects4J bugs can be currently localized by commonly-used FL techniques; (b) current practice of comparing state-of-the-art APR systems (i.e., counting the number of fixed bugs) is potentially misleading due to the bias of FL configurations; and (c) APR authors do not properly qualify their performance achievement with respect to the different tuning parameters implemented in APR systems.Comment: Accepted by ICST 201
    corecore