5,549 research outputs found

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    "Consciousness". Selected Bibliography 1970 - 2001

    Get PDF
    This is a bibliography of books and articles on consciousness in philosophy, cognitive science, and neuroscience over the last 30 years. There are three main sections, devoted to monographs, edited collections of papers, and articles. The first two of these sections are each divided into three subsections containing books in each of the main areas of research. The third section is divided into 12 subsections, with 10 subject headings for philosophical articles along with two additional subsections for articles in cognitive science and neuroscience. Of course the division is somewhat arbitrary, but I hope that it makes the bibliography easier to use. This bibliography has first been compiled by Thomas Metzinger and David Chalmers to appear in print in two philosophical anthologies on conscious experience (Metzinger 1995a, b). From 1995 onwards it has been continuously updated by Thomas Metzinger, and now is freely available as a PDF-, RTF-, or HTML-file. This bibliography mainly attempts to cover the Anglo-Saxon and German debates, in a non-annotated, fully formatted way that makes it easy to "cut and paste" from the original file. To a certain degree this bibliography also contains items in other languages than English and German - all submissions in other languages are welcome. Last update of current version: July 13th, 2001

    Subjective Perception of Time and a Progressive Present Moment: The Neurobiological Key to Unlocking Consciousness

    Get PDF
    The conclusion of physics, within both a historical and more recent context, that an objectively progressive time and present moment are derivative notions without actual physical foundation in nature, illustrate that these perceived chronological features originate from subjective conscious experience and the neurobiological processes underlying it. Using this conclusion as a stepping stone, it is posited that the phenomena of an in-built subjective conception of a progressive present moment in time and that of conscious awareness are actually one and the same thing, and as such, are also the outcome of the same neurobiological processes. A possible explanation as to how this might be achieved by the brain through employing the neuronal induced nonconscious cognitive manipulation of a small interval of time is proposed. The CIP phenomenon, elucidated within the context of this study is also then discussed

    Consciousness operates beyond the timescale for discerning time intervals: implications for Q-mind theories and analysis of quantum decoherence in brain

    Get PDF
    This paper presents in details how the subjective time is constructed by the brain cortex via reading packets of information called "time labels", produced by the right basal ganglia that act as brain timekeeper. Psychophysiological experiments have measured the subjective "time quanta" to be 40 ms and show that consciousness operates beyond that scale - an important result having profound implications for the Q-mind theory. Although in most current mainstream biophysics research on cognitive processes, the brain is modelled as a neural network obeying classical physics, Penrose (1989, 1997) and others have argued that quantum mechanics may play an essential role, and that successful brain simulations can only be performed with a quantum computer. Tegmark (2000) showed that make-or-break issue for the quantum models of mind is whether the relevant degrees of freedom of the brain can be sufficiently isolated to retain their quantum coherence and tried to settle the issue with detailed calculations of the relevant decoherence rates. He concluded that the mind is classical rather than quantum system, however his reasoning is based on biological inconsistency. Here we present detailed exposition of molecular neurobiology and define the dynamical timescale of cognitive processes linked to consciousness to be 10-15 ps showing that macroscopic quantum coherent phenomena in brain are not ruled out, and even may provide insight in understanding life, information and consciousness

    Neuronal Coherence Agent for Shared Intentionality : A Hypothesis of Neurobiological Processes Occurring during Social Interaction

    Get PDF
    Funding Information: No foundation that funded this research. Publisher Copyright: © 2021 by the author.The present interdisciplinary study discusses the physical foundations of the neurobiological processes occurring during social interaction. The review of the literature establishes the difference between Intentionality and Intention, thereby proposing the theoretical basis of Shared Intentionality in humans. According to the present study, Shared Intentionality in humans (Goal-directed coherence of biological systems), which is the ability among social organisms to instantly select just one stimulus for the entire group, is the outcome of evolutionary development. Therefore, this interaction modality should be the preferred, archetypal, and most propagated modality in organisms, attributed to the Model of Hierarchical Complexity Stage 3. This characteristic of biological systems facilitates the training of the new members of the group and also ensures efficient cooperation among the members of the group without requiring communication. In humans, Shared Intentionality contributes to the learning of newborns. The neurons of a mature organism may teach the neonate neurons regarding the fitting reactions to the excitatory inputs of the specific structural organization. This enables the neonate neurons to develop a Long-Term Potentiation that links particular stimuli with specific embodied sensorimotor neural networks. The present report discusses three possible neuronal coherence agents that could involve quantum mechanisms in cells, thereby enabling the distribution of the quality of goal-directed coherence in biological systems (Shared Intentionality in humans). Recently reported case studies conducted online with the task of conveying the meaning of numerosity to the children of age 18–33 months revealed the occurrence of Shared Intentionality in mother-child dyads in the absence of sensory cues between the two, which promoted cognitive development in the children. The findings of these case studies support the concept of physical foundations and the hypothesis of the neurophysiological process of social interaction proposed in the present study.publishersversionPeer reviewe

    Quantum effects in linguistic endeavors

    Full text link
    Classifying the information content of neural spike trains in a linguistic endeavor, an uncertainty relation emerges between the bit size of a word and its duration. This uncertainty is associated with the task of synchronizing the spike trains of different duration representing different words. The uncertainty involves peculiar quantum features, so that word comparison amounts to measurement-based-quantum computation. Such a quantum behavior explains the onset and decay of the memory window connecting successive pieces of a linguistic text. The behavior here discussed is applicable to other reported evidences of quantum effects in human linguistic processes, so far lacking a plausible framework, since either no efforts to assign an appropriate quantum constant had been associated or speculating on microscopic processes dependent on Planck's constant resulted in unrealistic decoherence times
    corecore