5 research outputs found

    <i>Indicatements </i>that character language models learn English morpho-syntactic units and regularities

    Get PDF
    Character language models have access to surface morphological patterns, but it is not clear whether or how they learn abstract morphological regularities. We instrument a character language model with several probes, finding that it can develop a specific unit to identify word boundaries and, by extension, morpheme boundaries, which allows it to capture linguistic properties and regularities of these units. Our language model proves surprisingly good at identifying the selectional restrictions of English derivational morphemes, a task that requires both morphological and syntactic awareness. Thus we conclude that, when morphemes overlap extensively with the words of a language, a character language model can perform morphological abstraction

    Analyzing and Interpreting Neural Networks for NLP: A Report on the First BlackboxNLP Workshop

    Full text link
    The EMNLP 2018 workshop BlackboxNLP was dedicated to resources and techniques specifically developed for analyzing and understanding the inner-workings and representations acquired by neural models of language. Approaches included: systematic manipulation of input to neural networks and investigating the impact on their performance, testing whether interpretable knowledge can be decoded from intermediate representations acquired by neural networks, proposing modifications to neural network architectures to make their knowledge state or generated output more explainable, and examining the performance of networks on simplified or formal languages. Here we review a number of representative studies in each category

    On understanding character-level models for representing morphology

    Get PDF
    Morphology is the study of how words are composed of smaller units of meaning (morphemes). It allows humans to create, memorize, and understand words in their language. To process and understand human languages, we expect our computational models to also learn morphology. Recent advances in neural network models provide us with models that compose word representations from smaller units like word segments, character n-grams, or characters. These so-called subword unit models do not explicitly model morphology yet they achieve impressive performance across many multilingual NLP tasks, especially on languages with complex morphological processes. This thesis aims to shed light on the following questions: (1) What do subword unit models learn about morphology? (2) Do we still need prior knowledge about morphology? (3) How do subword unit models interact with morphological typology? First, we systematically compare various subword unit models and study their performance across language typologies. We show that models based on characters are particularly effective because they learn orthographic regularities which are consistent with morphology. To understand which aspects of morphology are not captured by these models, we compare them with an oracle with access to explicit morphological analysis. We show that in the case of dependency parsing, character-level models are still poor in representing words with ambiguous analyses. We then demonstrate how explicit modeling of morphology is helpful in such cases. Finally, we study how character-level models perform in low resource, cross-lingual NLP scenarios, whether they can facilitate cross-linguistic transfer of morphology across related languages. While we show that cross-lingual character-level models can improve low-resource NLP performance, our analysis suggests that it is mostly because of the structural similarities between languages and we do not yet find any strong evidence of crosslinguistic transfer of morphology. This thesis presents a careful, in-depth study and analyses of character-level models and their relation to morphology, providing insights and future research directions on building morphologically-aware computational NLP models

    Integrating Distributional, Compositional, and Relational Approaches to Neural Word Representations

    Get PDF
    When the field of natural language processing (NLP) entered the era of deep neural networks, the task of representing basic units of language, an inherently sparse and symbolic medium, using low-dimensional dense real-valued vectors, or embeddings, became crucial. The dominant technique to perform this task has for years been to segment input text sequences into space-delimited words, for which embeddings are trained over a large corpus by means of leveraging distributional information: a word is reducible to the set of contexts it appears in. This approach is powerful but imperfect; words not seen during the embedding learning phase, known as out-of-vocabulary words (OOVs), emerge in any plausible application where embeddings are used. One approach applied in order to combat this and other shortcomings is the incorporation of compositional information obtained from the surface form of words, enabling the representation of morphological regularities and increasing robustness to typographical errors. Another approach leverages word-sense information and relations curated in large semantic graph resources, offering a supervised signal for embedding space structure and improving representations for domain-specific rare words. In this dissertation, I offer several analyses and remedies for the OOV problem based on the utilization of character-level compositional information in multiple languages and the structure of semantic knowledge in English. In addition, I provide two novel datasets for the continued exploration of vocabulary expansion in English: one with a taxonomic emphasis on novel word formation, and the other generated by a real-world data-driven use case in the entity graph domain. Finally, recognizing the recent shift in NLP towards contextualized representations of subword tokens, I describe the form in which the OOV problem still appears in these methods, and apply an integrative compositional model to address it.Ph.D

    Selectivity in Neural Networks

    Get PDF
    corecore