28,713 research outputs found

    A robust optimization approach for magnetic spacecraft attitude stabilization

    Get PDF
    Attitude stabilization of spacecraft using magnetorquers can be achieved by a proportional–derivative-like control algorithm. The gains of this algorithm are usually determined by using a trial-and-error approach within the large search space of the possible values of the gains. However, when finding the gains in this manner, only a small portion of the search space is actually explored. We propose here an innovative and systematic approach for finding the gains: they should be those that minimize the settling time of the attitude error. However, the settling time depends also on initial conditions. Consequently, gains that minimize the settling time for specific initial conditions cannot guarantee the minimum settling time under different initial conditions. Initial conditions are not known in advance. We overcome this obstacle by formulating a min–max problem whose solution provides robust gains, which are gains that minimize the settling time under the worst initial conditions, thus producing good average behavior. An additional difficulty is that the settling time cannot be expressed in analytical form as a function of gains and initial conditions. Hence, our approach uses some derivative-free optimization algorithms as building blocks. These algorithms work without the need to write the objective function analytically: they only need to compute it at a number of points. Results obtained in a case study are very promising

    On Optimization Modulo Theories, MaxSMT and Sorting Networks

    Full text link
    Optimization Modulo Theories (OMT) is an extension of SMT which allows for finding models that optimize given objectives. (Partial weighted) MaxSMT --or equivalently OMT with Pseudo-Boolean objective functions, OMT+PB-- is a very-relevant strict subcase of OMT. We classify existing approaches for MaxSMT or OMT+PB in two groups: MaxSAT-based approaches exploit the efficiency of state-of-the-art MAXSAT solvers, but they are specific-purpose and not always applicable; OMT-based approaches are general-purpose, but they suffer from intrinsic inefficiencies on MaxSMT/OMT+PB problems. We identify a major source of such inefficiencies, and we address it by enhancing OMT by means of bidirectional sorting networks. We implemented this idea on top of the OptiMathSAT OMT solver. We run an extensive empirical evaluation on a variety of problems, comparing MaxSAT-based and OMT-based techniques, with and without sorting networks, implemented on top of OptiMathSAT and {\nu}Z. The results support the effectiveness of this idea, and provide interesting insights about the different approaches.Comment: 17 pages, submitted at Tacas 1

    Comparison of PBO solvers in a dependency solving domain

    Full text link
    Linux package managers have to deal with dependencies and conflicts of packages required to be installed by the user. As an NP-complete problem, this is a hard task to solve. In this context, several approaches have been pursued. Apt-pbo is a package manager based on the apt project that encodes the dependency solving problem as a pseudo-Boolean optimization (PBO) problem. This paper compares different PBO solvers and their effectiveness on solving the dependency solving problem.Comment: In Proceedings LoCoCo 2010, arXiv:1007.083
    • …
    corecore