119 research outputs found

    Free for authors, free for readers, free from publisher, free formatting and free opinion: This is Free Neuropathology

    Get PDF
    Free for authors, free for readers, free from publisher, free formatting and free opinion: This is Free Neuropatholog

    Intraoperative confocal laser endomicroscopy for brain tumors - potential and challenges from a neuropathological perspective

    Get PDF
    Confocal laser endomicroscopy (CLE) represents a new non-invasive in vivo imaging technique that holds considerable promise in neurosurgery and neuropathology. CLE is based on the principle of optical sectioning which uses pinholes placed in the light path to selectively image photons of a specific focal plane by filtering out photons above and below the focal plane. Potential indications of CLE in neurosurgery and neuropathology include intraoperative tumor diagnosis and staging as well as assessment of tumor resection margins notably in the case of diffusely infiltrating gliomas. CLE-based tumor analysis in near-real time may also have a significant impact on future tumor resection strategies. We here discuss the technical features of CLE, its potential for wide-field imaging, its role in comparison to established histological techniques for intraoperative tumor assessment and its position in digital pathology and telepathology. Based on our group’s experience with a commercially available confocal laser endomicroscope (ZEISS CONVIVO), we critically address the current state of intraoperative CLE in brain tumor surgery, the applicability of classical histological criteria and the strategies required to further improve the diagnostic accuracy of CLE. We finally discuss how a widespread use of CLE in neurosurgery may modify the role of neuropathologists in intraoperative consultation, generating both new opportunities and new challenges

    Neuropathology, my friend - on the paths of being and non-being

    Get PDF

    Clustering of activated microglia occurs before the formation of dystrophic neurites in the evolution of Aβ plaques in Alzheimer’s disease.

    Get PDF
    Alzheimer’s disease (AD) is a late-onset disease that has proved difficult to model. Microglia are implicated in AD, but reports vary on precisely when and how in the sequence of pathological changes they become involved. Here, post-mortem human tissue from two differentially affected regions of the AD brain and from non-demented individuals with a high load of AD-type pathology (high pathology controls) was used to model the disease time course in order to determine how microglial activation relates temporally to the deposition of hallmark amyloid-β (Aβ) and hyperphosphorylated microtubule associated protein tau pathology. Immunofluorescence against the pan-microglial marker, ionised calcium-binding adapter molecule 1 (IBA1), Aβ and tau, was performed in the primary motor cortex (PMC), a region relatively spared of AD pathological changes, and compared to the severely affected inferior temporal cortex (ITC) in the same cases. Unlike the ITC, the PMC in the AD cases was spared of any degenerative changes in cortical thickness and the density of Betz cells and total neurons. The clustering of activated microglia was greatest in the PMC of AD cases and high pathology controls compared to the ITC. This suggests microglial activation is most prominent in the early phases of AD pathophysiology. Nascent tau inclusions were found in neuritic plaques in the PMC but were more numerous in the ITC of the same case. This shows that tau positive neuritic plaques begin early in AD which is likely of pathogenic importance, however major tau deposition follows the accumulation of Aβ and clustering of activated microglia. Importantly, findings presented here demonstrate that different states of microglial activation, corresponding to regional accumulations of Aβ and tau, are present simultaneously in the same individual; an important factor for consideration if targeting these cells for therapeutic intervention

    Differentiation of primary CNS lymphoma and glioblastoma using Raman spectroscopy and machine learning algorithms

    Get PDF
    Objective and Methods: Timely discrimination between primary CNS lymphoma (PCNSL) and glioblastoma is crucial for diagnostics and therapy, but most importantly also determines the intraoperative surgical course. Advanced radiological methods allow this to a certain extent but ultimately, biopsy is still necessary for final diagnosis. As an upcoming method that enables tissue analysis by tracking changes in the vibrational state of molecules via inelastic scattered photons, we used Raman Spectroscopy (RS) as a label free method to examine specimens of both tumor entities intraoperatively, as well as postoperatively in formalin fixed paraffin embedded (FFPE) samples. Results: We applied and compared statistical performance of linear and nonlinear machine learning algorithms (Logistic Regression, Random Forest and XGBoost), and found that Random Forest classification distinguished the two tumor entities with a balanced accuracy of 82,4% in intraoperative tissue condition and with 94% using measurements of distinct tumor areas on FFPE tissue. Taking a deeper insight into the spectral properties of the tumor entities, we describe different tumor-specific Raman shifts of interest for classification. Conclusions: Due to our findings, we propose RS as an additional tool for fast and non-destructive, perioperative tumor tissue discrimination, which may augment treatment options at an early stage. RS may further serve as a useful additional tool for neuropathological diagnostics with little requirements for tissue integrity

    The ’Accidental Neuropathologist' – on 40 Years in Neuropathology

    Get PDF

    Loss of Ramified Microglia Precedes Axonal Spheroid Formation in Adult-Onset Leukoencephalopathy with Axonal Spheroids.

    Get PDF
    Two different pathological mechanisms have been suggested to underlie adult-onset leukoencephalopathy with axonal spheroids (ALAS). Pathological studies have suggested that ALAS involves primary axonopathy with secondary demyelination. However, the identification of mutations in Colony Stimulating Factor 1 Receptor (CSF1R), important for microglial survival, has suggested that ALAS is a microgliopathy. This study examines the correlation between microglial changes and axonopathy in ALAS. A total of 6 ALAS cases were studied. White matter lesions were classified into three evolving stages: 1) numerous axonal spheroids among well-myelinated fibers; 2) moderate loss of myelinated fibers with or without axonal spheroids; and 3) a leukodystrophy-like pattern of severe confluent axonal and myelin loss. Axonal spheroids and ramified microglia were semi-quantified and the lesions were assigned a score of 0–3. We found a strong correlation between the preponderance of axonal spheroids and ramified microglial loss. All areas with a predominance of axonal spheroids showed a near-complete absence of ramified microglia, which was also apparent in small cortical and white matter lesions. In contrast, some areas with no ramified microglia showed no axonal pathology. Our findings support the suggestion that ramified microglia loss precedes axonal spheroids formation. This observation will help to better understand the pathogenesis of ALAS and suggests a protective role of microglia
    • …
    corecore