35 research outputs found

    Event Structures for Mixed Choice

    Get PDF
    In the context of models with mixed nondeterministic and probabilistic choice, we present a concurrent model based on partial orders, more precisely Winskel\u27s event structures. We study its relationship with the interleaving-based model of Segala\u27s probabilistic automata. Lastly, we use this model to give a truly concurrent semantics to an extension of CCS with probabilistic choice, and relate this concurrent semantics to the usual interleaving semantics, thus generalising existing results on CCS, event structures and labelled transition systems

    Concurrency and Probability: Removing Confusion, Compositionally

    Get PDF
    Assigning a satisfactory truly concurrent semantics to Petri nets with confusion and distributed decisions is a long standing problem, especially if one wants to resolve decisions by drawing from some probability distribution. Here we propose a general solution to this problem based on a recursive, static decomposition of (occurrence) nets in loci of decision, called structural branching cells (s-cells). Each s-cell exposes a set of alternatives, called transactions. Our solution transforms a given Petri net, possibly with confusion, into another net whose transitions are the transactions of the s-cells and whose places are those of the original net, with some auxiliary nodes for bookkeeping. The resulting net is confusion-free by construction, and thus conflicting alternatives can be equipped with probabilistic choices, while nonintersecting alternatives are purely concurrent and their probability distributions are independent. The validity of the construction is witnessed by a tight correspondence with the recursively stopped configurations of Abbes and Benveniste. Some advantages of our approach are that: i) s-cells are defined statically and locally in a compositional way; ii) our resulting nets faithfully account for concurrency.Fil: Bruni, Roberto Hector. Università degli Studi di Pisa; ItaliaFil: Melgratti, Hernan Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Montanari, Ugo. Università degli Studi di Pisa; Itali

    Confusion Control in Generalized Petri Nets Using Synchronized Events

    Get PDF
    The loss of conflicting information in a Petri net (PN), usually called confusions, leads to incomplete and faulty system behavior. Confusions, as an unfortunate phenomenon in discrete event systems modeled with Petri nets, are caused by the frequent interlacement of conflicting and concurrent transitions. In this paper, confusions are defined and investigated in bounded generalized PNs. A reasonable control strategy for conflicts and confusions in a PN is formulated by proposing elementary conflict resolution sequences (ECRSs) and a class of local synchronized Petri nets (LSPNs). Two control algorithms are reported to control the appeared confusions by generating a series of external events. Finally, an example of confusion analysis and control in an automated manufacturing system is presented

    Decidability and coincidence of equivalences for concurrency

    Get PDF
    There are two fundamental problems concerning equivalence relations in con-currency. One is: for which system classes is a given equivalence decidable? The second is: when do two equivalences coincide? Two well-known equivalences are history preserving bisimilarity (hpb) and hereditary history preserving bisimi-larity (hhpb). These are both ‘independence ’ equivalences: they reflect causal dependencies between events. Hhpb is obtained from hpb by adding a ‘back-tracking ’ requirement. This seemingly small change makes hhpb computationally far harder: hpb is well-known to be decidable for finite-state systems, whereas the decidability of hhpb has been a renowned open problem for several years; only recently it has been shown undecidable. The main aim of this thesis is to gain insights into the decidability problem for hhpb, and to analyse when it coincides with hpb; less technically, we might say, to analyse the power of the interplay between concurrency, causality, and conflict. We first examine the backtracking condition, and see that it has two dimen

    CSP as a Coordination Language. A CSP-based Approach to the Coordination of Concurrent Systems

    Get PDF
    Die Beherrschbarkeit komplexer nebenläufiger Systeme hängt in hohem Maße davon ab, mit welchen Methoden das System modelliert bzw. spezifiziert wird. Formale auf Nebenläufigkeit spezialisierte Methoden erlauben es, solche Systeme elegant auf einem hohen Abstraktionsniveau zu modellieren und zu analysieren. Ein Vertreter derartiger Methoden ist die in dieser Arbeit verwendete Prozess Algebra CSP. CSP ist ein weitverbreiteter, wohluntersuchter Formalismus, der es erlaubt, ein nebenläufiges System mathematisch präzise zu beschreiben und wichtige Eigenschaften, beispielsweise Verklemmungsfreiheit, zu verifizieren. Dennoch ist die Ableitung einer Systemimplementierung aus einem gegebenen CSP Modell immer noch ein aktueller Forschungsgegenstand. So ist zum Beispiel unklar, wie interne Aktionen eines Systems in einer Implementierung integriert werden können, da diese in CSP ununterscheidbar sind. Als Lösung wird in dieser Arbeit vorgeschlagen, CSP mit einer sequentiellen Zielsprache zu integrieren, so dass die Aktionen eines Systems in der sequentiellen Zielsprache implementiert werden und die Aktionen entsprechend eines CSP Prozesses koordiniert werden. Koordinationssprachen zielen ebenfalls darauf ab, Nebenläufigkeit von sequentiellen Aspekten eines Systems zu trennen, sie sind aber weniger auf automatisierte formale Verifikation ausgerichtet. In der Arbeit wird die Verwendung der Prozess Algebra CSP als formale Koordinationssprache für beliebige sequentielle Zielsprachen vorgeschlagen. Hierfür wird das formale Fundament einer Koordinationsumgebung entwickelt, die einen CSP Prozess zur Laufzeit simuliert und die Aktionen des Systems entsprechend ausführt. Besonderer Wert liegt auf der Koordination interner Aktionen und auf der Erkennung von Nebenläufigkeit zwischen extern synchronisierbaren und internen Aktionen. Durch Beweisverpflichtungen wird der Zusammenhang zwischen dem Koordinationsprozess und den Implementierungen der Aktionen hergestellt. Die Koordinationsumgebung wird konkret für die Zielsprache Java implementiert. Desweiteren wird eine Fallstudie vorgestellt, die sich mit der Entwicklung eines Workflow Servers beschäftigt, dessen interne Nebenläufigkeit einerseits selbst mittels CSP koordiniert wird und der andererseits CSP-basierte Workflows ausführen kann, die ebenfalls durch eine CSP Koordinationsumgebung gesteuert werden. Die Arbeit enthält wissenschaftliche Beiträge zur Theorie und der praktischen Verwendbarkeit von CSP, bezüglich der Konstruktion korrekter nebenläufiger Systeme, sowie zum Bereich der Modellierung und Verwaltung von Workflows.Complex concurrent systems are in general hard to understand, and equally hard to specify and to verify. The process algebra Communicating Sequential Processes (CSP) offers a way of taming the complexity of concurrent systems by focusing on the interaction behavior of systems and abstracting from synchronization mechanisms and other implementation details. CSP provides a mature intermediate level formalism that allows us to specify and model such systems in a mathematically precise way and to verify important properties, e. g., deadlock-freedom. However, the derivation of a system’s implementation from its CSP-based model is still a problem and sub ject to ongoing research. It is, for example, not obvious how to integrate CSP with internal actions of a system, because CSP abstracts from internal actions to a great extent. To overcome this problem, we propose to integrate CSP with a sequential host language such that the concurrency aspects of systems are captured on the CSP level and its actions are implemented in the sequential host language. This idea of separating concurrent and sequential aspects of a system is also known from coordination languages, but those are in general less amenable to automated verification. In this thesis, we present the use of CSP as a formal coordination language for arbitrary sequential host languages, allowing us to use CSP for the design, implementation, and verification of concurrent systems. To this end, we develop the model of a coordination environment that simulates a CSP process at runtime and performs the system’s actions accordingly. The coordination environment controls the system’s interaction with its environment as well as its internal actions. We present proof obligations to ensure that the properties proved on the CSP level also hold on the implementation level of the system. We also present an implementation of the coordination environment for the target language Java and a case study of constructing a workflow server as a coordinated concurrent Java program. This thesis contributes to the theory and practice of CSP, to the engineering of correct concurrent systems, and to the modeling and management of workflows. The main contribution of this thesis is a target language independent CSP-based framework for the construction of provably correct concurrent systems

    A uniform framework for modelling nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences

    Get PDF
    Labeled transition systems are typically used as behavioral models of concurrent processes, and the labeled transitions define the a one-step state-to-state reachability relation. This model can be made generalized by modifying the transition relation to associate a state reachability distribution, rather than a single target state, with any pair of source state and transition label. The state reachability distribution becomes a function mapping each possible target state to a value that expresses the degree of one-step reachability of that state. Values are taken from a preordered set equipped with a minimum that denotes unreachability. By selecting suitable preordered sets, the resulting model, called ULTraS from Uniform Labeled Transition System, can be specialized to capture well-known models of fully nondeterministic processes (LTS), fully probabilistic processes (ADTMC), fully stochastic processes (ACTMC), and of nondeterministic and probabilistic (MDP) or nondeterministic and stochastic (CTMDP) processes. This uniform treatment of different behavioral models extends to behavioral equivalences. These can be defined on ULTraS by relying on appropriate measure functions that expresses the degree of reachability of a set of states when performing single-step or multi-step computations. It is shown that the specializations of bisimulation, trace, and testing equivalences for the different classes of ULTraS coincide with the behavioral equivalences defined in the literature over traditional models
    corecore