51 research outputs found

    Understanding the origins of metastability in thin film growth; tantalum and the early group VB-VIB metals

    Get PDF
    Tantalum (Ta) is a metal that is highly prized for its applications in a variety of industries, including the microelectronics industry, where it is largely used in thin film modifications in order to achieve various electronic, magnetic and structural capabilities in solid-state devices. Ta frequently forms metastable phases, including the well-known Ăź-phase, during the preparation of thin Ta films by standard film deposition methods such as sputtering and electro-deposition. In order to gain insight into Ta metastable phase formation, the Bain transformation mechanism is studied for Ta and the neighboring body centered cubic (bcc) transition metals in Groups 5 and 6 of the Periodic Table, resulting in the prediction of hypothetical body centered tetragonal (bct) and face centered cubic (fcc) phases for all the studied metals at c/a ratios greater than 1.6 and equal to /2 respectively. Density Functional Theory (DFT) in the Linearized Augmented Plane Wave (LAPW) formalism and the Lowest Order Variational Approximation (LOVA) for the solution of the Boltzmann transport equation have been used to calculate the temperature dependent resistivity for the studied metals and reveal that substrate-induced film strain is not by itself sufficient to cause the formation of Ăź-Ta. Fermi surface calculations of the mean electron velocity in the proposed P42/mnm structure of Ăź-Ta suggest that the high values of resistivity frequently measured for Ăź-Ta are not an intrinsic property

    Thermal performance of sandstone reservoirs for thermal energy storage: an integrated experimental and analytical study

    Get PDF
    With the global plans of decarbonization in motion, major energy players and large oil and gas (O&G) companies are moving towards increasing energy generation from non-fossil sources. The implementation of renewable energy has a critical constraint, the intermittent nature of the renewables. Energy storage systems help overcome the seasonal intermittence of renewable power generation sources. Besides, thermal energy storage (TES) systems can optimize renewable energy management, providing equilibrium between energy generation and demand. For utility-scale projects, the TES systems must be capable of storing an extensive amount of heat. The thermal capability of subsurface rocks to store heat makes them an optimal option for energy storage. A subsurface thermal energy storage can store the energy surplus generated by solar and wind plants. The energy excess is used to heat a heat transfer fluid; then, this fluid is injected into the geothermal sedimentary reservoir. When solar or wind cannot generate energy or the demand is higher than production, the energy stored in the thermal battery is extracted for thermal direct use or power generation. Subsurface TES can store a considerable quantity of energy at a reasonable cost. Sedimentary formations in oil and gas basins offer multiple advantages for being TES solutions. O&G basin sands are i) deep enough to store water at high pressure, ii) usually offer higher porosity (storage capacity) and higher permeability (flow capacity) than volcanic rocks or shales, iii) the water stored is confined by sealing rocks, and iv) the sedimentary reservoirs frequently offer large volumes to store the hot water. This dissertation aims to evaluate the thermal performance of sandstone reservoirs for thermal energy storage applications. The research encompasses a comprehensive experimental analysis of 30 sandstone samples, encompassing petrophysical and thermal rock properties, rock mineralogy, and rock texture analyses. The specific objectives are: i) establish connections between the porosity, permeability and density of sandstone rocks and their thermal behavior, with a focus on thermal energy storage applications, ii) Establish correlations between the mineralogy and other rock properties, such as thermal properties and textural features, to comprehend the influence of mineral composition on the sandstone's behavior and performance iii) understand the relationships between textural properties and thermal properties, and iv) evaluate the impact of the natural heterogeneity of sandstone properties in the thermal energy storage reservoir performance

    Research on Teaching and Learning In Biology, Chemistry and Physics In ESERA 2013 Conference

    Get PDF
    This paper provides an overview of the topics in educational research that were published in the ESERA 2013 conference proceedings. The aim of the research was to identify what aspects of the teacher-student-content interaction were investigated frequently and what have been studied rarely. We used the categorization system developed by Kinnunen, Lampiselkä, Malmi and Meisalo (2016) and altogether 184 articles were analyzed. The analysis focused on secondary and tertiary level biology, chemistry, physics, and science education. The results showed that most of the studies focus on either the teacher’s pedagogical actions or on the student - content relationship. All other aspects were studied considerably less. For example, the teachers’ thoughts about the students’ perceptions and attitudes towards the goals and the content, and the teachers’ conceptions of the students’ actions towards achieving the goals were studied only rarely. Discussion about the scope and the coverage of the research in science education in Europe is needed.Peer reviewe

    Second Generation General System Theory: Perspectives in Philosophy and Approaches in Complex Systems

    Get PDF
    Following the classical work of Norbert Wiener, Ross Ashby, Ludwig von Bertalanffy and many others, the concept of System has been elaborated in different disciplinary fields, allowing interdisciplinary approaches in areas such as Physics, Biology, Chemistry, Cognitive Science, Economics, Engineering, Social Sciences, Mathematics, Medicine, Artificial Intelligence, and Philosophy. The new challenge of Complexity and Emergence has made the concept of System even more relevant to the study of problems with high contextuality. This Special Issue focuses on the nature of new problems arising from the study and modelling of complexity, their eventual common aspects, properties and approaches—already partially considered by different disciplines—as well as focusing on new, possibly unitary, theoretical frameworks. This Special Issue aims to introduce fresh impetus into systems research when the possible detection and correction of mistakes require the development of new knowledge. This book contains contributions presenting new approaches and results, problems and proposals. The context is an interdisciplinary framework dealing, in order, with electronic engineering problems; the problem of the observer; transdisciplinarity; problems of organised complexity; theoretical incompleteness; design of digital systems in a user-centred way; reaction networks as a framework for systems modelling; emergence of a stable system in reaction networks; emergence at the fundamental systems level; behavioural realization of memoryless functions

    ISCR Annual Report: Fical Year 2004

    Full text link

    Fifth Conference on Artificial Intelligence for Space Applications

    Get PDF
    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration

    Algorithms and Software for Biological MP Modeling by Statistical and Optimization Techniques

    Get PDF
    I sistemi biologici sono gruppi di entit\ue0 biologiche (es. molecole ed organismi), che interagiscono producendo specifiche dinamiche. Questi sistemi sono solitamente caratterizzati da una elevata complessit\ue0 perch\ue8 coinvolgono un elevato numero di componenti con molte interconnessioni. La comprensione dei meccanismi che governano i sistemi biologici e la previsione dei loro comportamenti in condizioni normali e patologiche \ue8 una sfida cruciale della biologia dei sistemi (in inglese detta systems biology), un'area di ricerca al confine tra biologia, medicina, matematica ed informatica. In questa tesi i P sistemi metabolici, detti brevemente sistemi MP, sono stati utilizzati come modello discreto per l'analisi di dinamiche biologiche. Essi sono una classe deterministica dei P sistemi classici, che utilizzano regole di riscrittura per rappresentare le reazioni chimiche e "funzioni di regolazioni di flusso" per regolare la reattivit\ue0 di ciascuna reazione rispetto alla quantita' di sostanze presenti istantaneamente nel sistema. Dopo un excursus sulla letteratura relativa ad alcuni modelli convenzionali (come le equazioni differenziali ed i modelli stocastici proposti da Gillespie) e non-convenzionali (come i P sistemi ed i P sistemi metabolici), saranno presentati i risultati della mia ricerca. Essi riguardano tre argomenti principali: i) l'equivalenza tra sistemi MP e reti di Petri ibride funzionali, ii) le prospettive statistiche e di ottimizzazione nella generazione di sistemi MP a partire da dati sperimentali, iii) lo sviluppo di un laboratorio virtuale chiamato MetaPlab, un software Java basato sui sistemi MP. L'equivalenza tra i sistemi MP e le reti di Petri ibride funzionali \ue8 stata dimostrata per mezzo di due teoremi ed alcuni esperimenti al computer per il caso di studio del meccanismo regolativo del gene operone lac nella pathway glicolitica. Il secondo argomento di ricerca concerne nuovi approcci per la sintesi delle funzioni di regolazione di flusso. La regressione stepwise e le reti neurali sono state impiegate come approssimatori di funzioni, mentre algoritmi di ottimizzazione classici ed evolutivi (es. backpropagation, algoritmi genetici, particle swarm optimization ed algoritmi memetici) sono stati impiegati per l'addestramento dei modelli. Una completo workflow per l'analisi dei dati sperimentali \ue8 stato presentato. Esso gestisce ed indirizza l'intero processo di sintesi delle funzioni di regolazione, dalla preparazione dei dati alla selezione delle variabili, fino alla generazione dei modelli ed alla loro validazione. Le metodologie proposte sono state testate con successo tramite esperimenti al computer sui casi di studio dell'oscillatore mitotico negli embrioni anfibi e del non photochemical quenching (NPQ). L'ultimo tema di ricerca \ue8 infine piu' applicativo e riguarda la progettazione e lo sviluppo di una architettura Java basata su plugin e di una serie di plugin che consentono di automatizzare varie fasi del processo di modellazione con sistemi MP, come la simulazione di dinamiche, la determinazione dei flussi e la generazione delle funzioni di regolazione.Biological systems are groups of biological entities, (e.g., molecules and organisms), that interact together producing specific dynamics. These systems are usually characterized by a high complexity, since they involve a large number of components having many interconnections. Understanding biological system mechanisms, and predicting their behaviors in normal and pathological conditions is a crucial challenge in systems biology, which is a central research area on the border among biology, medicine, mathematics and computer science. In this thesis metabolic P systems, also called MP systems, have been employed as discrete modeling framework for the analysis of biological system dynamics. They are a deterministic class of P systems employing rewriting rules to represent chemical reactions and "flux regulation functions" to tune reactions reactivity according to the amount of substances present in the system. After an excursus on the literature about some conventional (i.e., differential equations, Gillespie's models) and unconventional (i.e., P systems and metabolic P systems) modeling frameworks, the results of my research are presented. They concern three research topics: i) equivalences between MP systems and hybrid functional Petri nets, ii) statistical and optimization perspectives in the generation of MP models from experimental data, iii) development of the virtual laboratory MetaPlab, a Java software based on MP systems. The equivalence between MP systems and hybrid functional Petri nets is proved by two theorems and some in silico experiments for the case study of the lac operon gene regulatory mechanism and glycolytic pathway. The second topic concerns new approaches to the synthesis of flux regulation functions. Stepwise linear regression and neural networks are employed as function approximators, and classical/evolutionary optimization algorithms (e.g., backpropagation, genetic algorithms, particle swarm optimization, memetic algorithms) as learning techniques. A complete pipeline for data analysis is also presented, which addresses the entire process of flux regulation function synthesis, from data preparation to feature selection, model generation and statistical validation. The proposed methodologies have been successfully tested by means of in silico experiments on the mitotic oscillator in early amphibian embryos and the non photochemical quenching (NPQ). The last research topic is more applicative, and pertains the design and development of a Java plugin architecture and several plugins which enable to automatize many tasks related to MP modeling, such as, dynamics computation, flux discovery, and regulation function synthesis

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Batch Control and Diagnosis

    Get PDF
    Batch processes are becoming more and more important in the chemical process industry, where they are used in the manufacture of specialty materials, which often are highly profitable. Some examples where batch processes are important are the manufacturing of pharmaceuticals, polymers, and semiconductors. The focus of this thesis is exception handling and fault detection in batch control. In the first part an internal model approach for exception handling is proposed where each equipment object in the control system is extended with a state-machine based model that is used on-line to structure and implement the safety interlock logic. The thesis treats exception handling both at the unit supervision level and at the recipe level. The goal is to provide a structure, which makes the implementation of exception handling in batch processes easier. The exception handling approach has been implemented in JGrafchart and tested on the batch pilot plant Procel at Universitat Politècnica de Catalunya in Barcelona, Spain. The second part of the thesis is focused on fault detection in batch processes. A process fault can be any kind of malfunction in a dynamic system or plant, which leads to unacceptable performance such as personnel injuries or bad product quality. Fault detection in dynamic processes is a large area of research where several different categories of methods exist, e.g., model-based and process history-based methods. The finite duration and non-linear behavior of batch processes where the variables change significantly over time and the quality variables are only measured at the end of the batch lead to that the monitoring of batch processes is quite different from the monitoring of continuous processes. A benchmark batch process simulation model is used for comparison of several fault detection methods. A survey of multivariate statistical methods for batch process monitoring is performed and new algorithms for two of the methods are developed. It is also shown that by combining model-based estimation and multivariate methods fault detection can be improved even though the process is not fully observable
    • …
    corecore