3 research outputs found

    Computer system for plant replication - hardware implementation

    Get PDF
    Trend industrije 4.0 pretvara proizvodne sposobnosti svih industrija, uključujući i poljoprivrednu domenu. Digitalizacija poljoprivrede temelji se na razvoju i uvođenju novih alata i strojeva u proizvodnji. Povezivost je temelj ove transformacije i tehnologija Interneta stvari je ključna tehnologija koja je sve više dio poljoprivredne opreme. Još jedna važna transformacija u procesu poljoprivredne proizvodnje je rastuća uloga automatizacije koja povećava produktivnost smanjujući potrebu za ljudskom radnom snagom. Razvoj urbane poljoprivrede i robotske proizvodnje stvorio je OpenAg™ Personal Food Computer (PFC), inovativni uređaj za kontrolirano okruženje za hidroponski rast biljaka. Ovaj rad predstavlja glavni dizajn i cjelokupnu sklopovsku implementaciju PFC-a. Senzori za vodu i okoliš nadgledaju kakvoću vode i atmosferski sastav, dok web kamera prati rast i razvoj biljaka. Komponente su spojene na središnji Arduino i Raspberry Pi, koji olakšavaju prijenos i obradu podataka. Kroz tehnološki napredak, društvene alate i globalne mreže, PFC osigurava fizička, digitalna i biološka sredstva za otvorenu proizvodnju hrane, postavljajući temelje za sljedeću poljoprivrednu revoluciju.The Industry 4.0 trend is transforming the production capabilities of all industries, including the agricultural domain. Connectivity is the cornerstone of this transformation and IoT a key enabling technology that is increasingly part of agricultural equipment. Another important transformation in the agricultural production process is the rising role of automation that increases productivity by reducing the need for human workforce. Developments in urban farming and robotics have produced OpenAg™ Personal Food Computer (PFC), an innovative personal controlled-environment device for hydroponic plant growth. This paper presents the main design and whole hardware implementation of PFC. Environmental sensors monitor water quality and atmospheric composition. A webcam tracks the growth and development of plants. These components are connected to a central Arduino and Raspberry Pi, which facilitate data transfer and processing. Through technological advancements, social tools and global networks, the PFC provides the physical, digital, and biological means for open sourcing food production, launching the foundation for the next agricultural revolution

    Computer system for plant replication - hardware implementation

    Get PDF
    Trend industrije 4.0 pretvara proizvodne sposobnosti svih industrija, uključujući i poljoprivrednu domenu. Digitalizacija poljoprivrede temelji se na razvoju i uvođenju novih alata i strojeva u proizvodnji. Povezivost je temelj ove transformacije i tehnologija Interneta stvari je ključna tehnologija koja je sve više dio poljoprivredne opreme. Još jedna važna transformacija u procesu poljoprivredne proizvodnje je rastuća uloga automatizacije koja povećava produktivnost smanjujući potrebu za ljudskom radnom snagom. Razvoj urbane poljoprivrede i robotske proizvodnje stvorio je OpenAg™ Personal Food Computer (PFC), inovativni uređaj za kontrolirano okruženje za hidroponski rast biljaka. Ovaj rad predstavlja glavni dizajn i cjelokupnu sklopovsku implementaciju PFC-a. Senzori za vodu i okoliš nadgledaju kakvoću vode i atmosferski sastav, dok web kamera prati rast i razvoj biljaka. Komponente su spojene na središnji Arduino i Raspberry Pi, koji olakšavaju prijenos i obradu podataka. Kroz tehnološki napredak, društvene alate i globalne mreže, PFC osigurava fizička, digitalna i biološka sredstva za otvorenu proizvodnju hrane, postavljajući temelje za sljedeću poljoprivrednu revoluciju.The Industry 4.0 trend is transforming the production capabilities of all industries, including the agricultural domain. Connectivity is the cornerstone of this transformation and IoT a key enabling technology that is increasingly part of agricultural equipment. Another important transformation in the agricultural production process is the rising role of automation that increases productivity by reducing the need for human workforce. Developments in urban farming and robotics have produced OpenAg™ Personal Food Computer (PFC), an innovative personal controlled-environment device for hydroponic plant growth. This paper presents the main design and whole hardware implementation of PFC. Environmental sensors monitor water quality and atmospheric composition. A webcam tracks the growth and development of plants. These components are connected to a central Arduino and Raspberry Pi, which facilitate data transfer and processing. Through technological advancements, social tools and global networks, the PFC provides the physical, digital, and biological means for open sourcing food production, launching the foundation for the next agricultural revolution

    Investigating prediction modelling of academic performance for students in rural schools in Kenya

    Get PDF
    Academic performance prediction modelling provides an opportunity for learners' probable outcomes to be known early, before they sit for final examinations. This would be particularly useful for education stakeholders to initiate intervention measures to help students who require high intervention to pass final examinations. However, limitations of infrastructure in rural areas of developing countries, such as lack of or unstable electricity and Internet, impede the use of PCs. This study proposed that an academic performance prediction model could include a mobile phone interface specifically designed based on users' needs. The proposed mobile academic performance prediction system (MAPPS) could tackle the problem of underperformance and spur development in the rural areas. A six-step Cross-Industry Standard Process for Data Mining (CRISP-DM) theoretical framework was used to support the design of MAPPS. Experiments were conducted using two datasets collected in Kenya. One dataset had 2426 records of student data having 22 features, collected from 54 rural primary schools. The second dataset had 1105 student records with 19 features, collected from 11 peri-urban primary schools. Evaluation was conducted to investigate: (i) which is the best classifier model among the six common classifiers selected for the type of data used in this study; (ii) what is the optimal subset of features from the total number of features for both rural and peri-urban datasets; and (iii) what is the predictive performance of the Mobile Academic Performance Prediction System in classifying the high intervention class. It was found that the system achieved an F-Measure rate of nearly 80% in determining the students who need high intervention two years before the final examination. It was also found that the system was useful and usable in rural environments; the accuracy of prediction was good enough to motivate stakeholders to initiate strategic intervention measures. This study provides experimental evidence that Educational Data Mining (EDM) techniques can be used in the developing world by exploiting the ubiquitous mobile technology for student academic performance prediction
    corecore