24 research outputs found

    "Almost stable" matchings in the Roommates problem with bounded preference lists

    Get PDF
    An instance of the classical Stable Roommates problem need not admit a stable matching. Previous work has considered the problem of finding a matching that is "as stable as possible", i.e., admits the minimum number of blocking pairs. It is known that this problem is NP-hard and not approximable within n1 2-Īµ, for any Īµ>0, unless P=NP, where n is the number of agents in a given instance. In this paper, we extend the study to the Stable Roommates problem with Incomplete lists. In particular, we consider the case that the lengths of the lists are bounded by some integer d. We show that, even if d=3, there is some c>1 such that the problem of finding a matching with the minimum number of blocking pairs is not approximable within c unless P=NP. On the other hand, we show that the problem is solvable in polynomial time for dā‰¤2, and we give a (2d-3)-approximation algorithm for fixed d<3. If the given lists satisfy an additional condition (namely the absence of a so-called elitist odd party-a structure that is unlikely to exist in general), the performance guarantee improves to 2d-4. Ā© 2012 Elsevier B.V. All rights reserved

    Fast distributed almost stable marriages

    Full text link
    In their seminal work on the Stable Marriage Problem, Gale and Shapley describe an algorithm which finds a stable matching in O(n2)O(n^2) communication rounds. Their algorithm has a natural interpretation as a distributed algorithm where each player is represented by a single processor. In this distributed model, Floreen, Kaski, Polishchuk, and Suomela recently showed that for bounded preference lists, terminating the Gale-Shapley algorithm after a constant number of rounds results in an almost stable matching. In this paper, we describe a new deterministic distributed algorithm which finds an almost stable matching in O(logā”5n)O(\log^5 n) communication rounds for arbitrary preferences. We also present a faster randomized variant which requires O(logā”2n)O(\log^2 n) rounds. This run-time can be improved to O(1)O(1) rounds for "almost regular" (and in particular complete) preferences. To our knowledge, these are the first sub-polynomial round distributed algorithms for any variant of the stable marriage problem with unbounded preferences.Comment: Various improvements in version 2: algorithms for general (not just "almost regular") preferences; deterministic variant of the algorithm; streamlined proof of approximation guarante

    "Almost-stable" matchings in the Hospitals / Residents problem with Couples

    Get PDF
    The Hospitals / Residents problem with Couples (hrc) models the allocation of intending junior doctors to hospitals where couples are allowed to submit joint preference lists over pairs of (typically geographically close) hospitals. It is known that a stable matching need not exist, so we consider min bp hrc, the problem of finding a matching that admits the minimum number of blocking pairs (i.e., is ā€œas stable as possibleā€). We show that this problem is NP-hard and difficult to approximate even in the highly restricted case that each couple finds only one hospital pair acceptable. However if we further assume that the preference list of each single resident and hospital is of length at most 2, we give a polynomial-time algorithm for this case. We then present the first Integer Programming (IP) and Constraint Programming (CP) models for min bp hrc. Finally, we discuss an empirical evaluation of these models applied to randomly-generated instances of min bp hrc. We find that on average, the CP model is about 1.15 times faster than the IP model, and when presolving is applied to the CP model, it is on average 8.14 times faster. We further observe that the number of blocking pairs admitted by a solution is very small, i.e., usually at most 1, and never more than 2, for the (28,000) instances considered

    The Stable Roommates problem with short lists

    Get PDF
    We consider two variants of the classical Stable Roommates problem with Incomplete (but strictly ordered) preference lists (sri) that are degree constrained, i.e., preference lists are of bounded length. The first variant, egald-sri, involves finding an egalitarian stable matching in solvable instances of sri with preference lists of length at most d. We show that this problem is NP-hard even if d = 3. On the positive side we give a 2d+372d+37-approximation algorithm for d āˆˆ{3,4,5} which improves on the known bound of 2 for the unbounded preference list case. In the second variant of sri, called d-srti, preference lists can include ties and are of length at most d. We show that the problem of deciding whether an instance of d-srti admits a stable matching is NP-complete even if d = 3. We also consider the ā€œmost stableā€ version of this problem and prove a strong inapproximability bound for the d = 3 case. However for d = 2 we show that the latter problem can be solved in polynomial time

    How Hard Is It to Satisfy (Almost) All Roommates?

    Get PDF
    The classic Stable Roommates problem (the non-bipartite generalization of the well-known Stable Marriage problem) asks whether there is a stable matching for a given set of agents, i.e. a partitioning of the agents into disjoint pairs such that no two agents induce a blocking pair. Herein, each agent has a preference list denoting who it prefers to have as a partner, and two agents are blocking if they prefer to be with each other rather than with their assigned partners. Since stable matchings may not be unique, we study an NP-hard optimization variant of Stable Roommates, called Egal Stable Roommates, which seeks to find a stable matching with a minimum egalitarian cost gamma, i.e. the sum of the dissatisfaction of the agents is minimum. The dissatisfaction of an agent is the number of agents that this agent prefers over its partner if it is matched; otherwise it is the length of its preference list. We also study almost stable matchings, called Min-Block-Pair Stable Roommates, which seeks to find a matching with a minimum number beta of blocking pairs. Our main result is that Egal Stable Roommates parameterized by gamma is fixed-parameter tractable, while Min-Block-Pair Stable Roommates parameterized by beta is W[1]-hard, even if the length of each preference list is at most five

    Size versus stability in the marriage problem

    Get PDF
    Given an instance I of the classical Stable Marriage problem with Incomplete preference lists (smi), a maximum cardinality matching can be larger than a stable matching. In many large-scale applications of smi, we seek to match as many agents as possible. This motivates the problem of finding a maximum cardinality matching in I that admits the smallest number of blocking pairs (so is ā€œas stable as possibleā€). We show that this problem is NP-hard and not approximable within n1āˆ’Īµ, for any Īµ&#62;0, unless P=NP, where n is the number of men in I. Further, even if all preference lists are of length at most 3, we show that the problem remains NP-hard and not approximable within Ī“, for some Ī“&#62;1. By contrast, we give a polynomial-time algorithm for the case where the preference lists of one sex are of length at most 2. We also extend these results to the cases where (i) preference lists may include ties, and (ii) we seek to minimize the number of agents involved in a blocking pair

    A structural approach to matching problems with preferences

    Get PDF
    This thesis is a study of a number of matching problems that seek to match together pairs or groups of agents subject to the preferences of some or all of the agents. We present a number of new algorithmic results for five specific problem domains. Each of these results is derived with the aid of some structural properties implicitly embedded in the problem. We begin by describing an approximation algorithm for the problem of finding a maximum stable matching for an instance of the stable marriage problem with ties and incomplete lists (MAX-SMTI). Our polynomial time approximation algorithm provides a performance guarantee of 3/2 for the general version of MAX-SMTI, improving upon the previous best approximation algorithm, which gave a performance guarantee of 5/3. Next, we study the sex-equal stable marriage problem (SESM). We show that SESM is W[1]-hard, even if the men's and women's preference lists are both of length at most three. This improves upon the previously known hardness results. We contrast this with an exact, low-order exponential time algorithm. This is the first non-trivial exponential time algorithm known for this problem, or indeed for any hard stable matching problem. Turning our attention to the hospitals / residents problem with couples (HRC), we show that HRC is NP-complete, even if very severe restrictions are placed on the input. By contrast, we give a linear-time algorithm to find a stable matching with couples (or report that none exists) when stability is defined in terms of the classical Gale-Shapley concept. This result represents the most general polynomial time solvable restriction of HRC that we are aware of. We then explore the three dimensional stable matching problem (3DSM), in which we seek to find stable matchings across three sets of agents, rather than two (as in the classical case). We show that under two natural definitions of stability, finding a stable matching for a 3DSM instance is NP-complete. These hardness results resolve some open questions in the literature. Finally, we study the popular matching problem (POP-M) in the context of matching a set of applicants to a set of posts. We provide a characterization of the set of popular matchings for an arbitrary POP-M instance in terms of a new structure called the switching graph exploited to yield efficient algorithms for a range of associated problems, extending and improving upon the previously best-known results for this problem
    corecore