33 research outputs found

    Signal waveform estimation in the presence of uncertainties about the steering vector

    Get PDF
    We consider the problem of signal waveform estimation using an array of sensors where there exist uncertainties about the steering vector of interest. This problem occurs in many situations, including arrays undergoing deformations, uncalibrated arrays, scattering around the source, etc. In this paper, we assume that some statistical knowledge about the variations of the steering vector is available. Within this framework, two approaches are proposed, depending on whether the signal is assumed to be deterministic or random. In the former case, the maximum likelihood (ML) estimator is derived. It is shown that it amounts to a beamforming-like processing of the observations, and an iterative algorithm is presented to obtain the ML weight vector. For random signals, a Bayesian approach is advocated, and we successively derive an (approximate) minimum mean-square error estimator and maximum a posteriori estimators. Numerical examples are provided to illustrate the performances of the estimators

    Matched direction detectors and estimators for array processing with subspace steering vector uncertainties

    Get PDF
    In this paper, we consider the problem of estimating and detecting a signal whose associated spatial signature is known to lie in a given linear subspace but whose coordinates in this subspace are otherwise unknown, in the presence of subspace interference and broad-band noise. This situation arises when, on one hand, there exist uncertainties about the steering vector but, on the other hand, some knowledge about the steering vector errors is available. First, we derive the maximum-likelihood estimator (MLE) for the problem and compute the corresponding Cramer-Rao bound. Next, the maximum-likelihood estimates are used to derive a generalized likelihood ratio test (GLRT). The GLRT is compared and contrasted with the standard matched subspace detectors. The performances of the estimators and detectors are illustrated by means of numerical simulations

    The influence of random element displacement on DOA estimates obtained with (Khatri-Rao-)root-MUSIC

    Get PDF
    Although a wide range of direction of arrival (DOA) estimation algorithms has been described for a diverse range of array configurations, no specific stochastic analysis framework has been established to assess the probability density function of the error on DOA estimates due to random errors in the array geometry. Therefore, we propose a stochastic collocation method that relies on a generalized polynomial chaos expansion to connect the statistical distribution of random position errors to the resulting distribution of the DOA estimates. We apply this technique to the conventional root-MUSIC and the Khatri-Rao-root-MUSIC methods. According to Monte-Carlo simulations, this novel approach yields a speedup by a factor of more than 100 in terms of CPU-time for a one-dimensional case and by a factor of 56 for a two-dimensional case

    Robust approaches to remote calibration of a transmitting array

    Get PDF
    We consider the problem of estimating the gains and phases of the RF channels of a M-element transmitting array, based on a calibration procedure where M orthogonal signals are sent through M orthogonal beams and received on a single antenna. The received data vector obeys a linear model of the type y ¼ AFg þ n where A is an unknown complex scalar accounting for propagation loss and g is the vector of unknown complex gains. In order to improve the performance of the least-squares (LS) estimator at low signal to noise ratio (SNR), we propose to exploit knowledge of the nominal value of g, viz g. Towards this end, two approaches are presented. First, a Bayesian approach is advocated where A and g are considered as random variables, with a non-informative prior distribution for A and a Gaussian prior distribution for g. The posterior distributions of the unknown random variables are derived and a Gibbs sampling strategy is presented that enables one to generate samples distributed according to these posterior distributions, leading to the minimum mean-square error (MMSE) estimator. A second approach consists in solving a constrained least-squares problem in which h ¼ Ag is constrained to be close to a scaled version of g. This second approach yields a closed-form solution, which amounts to a linear combination of g and the LS estimator. Numerical simulations show that the two new estimators significantly outperform the conventional LS estimator, especially at low SNR

    Calibration Challenges for Future Radio Telescopes

    Full text link
    Instruments for radio astronomical observations have come a long way. While the first telescopes were based on very large dishes and 2-antenna interferometers, current instruments consist of dozens of steerable dishes, whereas future instruments will be even larger distributed sensor arrays with a hierarchy of phased array elements. For such arrays to provide meaningful output (images), accurate calibration is of critical importance. Calibration must solve for the unknown antenna gains and phases, as well as the unknown atmospheric and ionospheric disturbances. Future telescopes will have a large number of elements and a large field of view. In this case the parameters are strongly direction dependent, resulting in a large number of unknown parameters even if appropriately constrained physical or phenomenological descriptions are used. This makes calibration a daunting parameter estimation task, that is reviewed from a signal processing perspective in this article.Comment: 12 pages, 7 figures, 20 subfigures The title quoted in the meta-data is the title after release / final editing

    Array Manifold Calibration for Multichannel SAR Sounders

    Get PDF
    This dissertation demonstrates airborne synthetic aperture radar (SAR) sounder array manifold calibration to improve outcomes in two-dimensional and three-dimensional image formation of ice sheet and glacier subsurfaces. The methodology relies on the creation of snapshot databases that aid in both the identification of calibration pixels as well as the validation of proposed calibration strategies. A parametric estimator of nonlinear SAR sounder manifold parameters is derived given a superset of statistically independent and spatially diverse subsets, assuming knowledge of the manifold model. Both measurements-based and computational electromagnetic modeling (CEM) approaches are pursued in obtaining a parametric representation of the manifold that enables the application of this estimator. The former relies on a principal components based characterization of SAR sounder manifolds. By incorporating a subspace clustering technique to identify pixels with a single dominant source, the algorithm circumvents an assumption of single source observations that underlies the formulation of nonparametric methods and traditionally limits the applicability of these techniques to the SAR sounder problem. Three manifolds are estimated and tested against a nominal manifold model in angle estimation and tomography. Measured manifolds on average reduce angle estimation error by a factor of 4.8 and lower vertical elevation uncertainty of SAR sounder derived digital elevation models by a factor of 3.7. Application of the measured manifolds in angle estimation produces 3-D images with more focused scattering signatures and higher intensity pixels that improve automated surface extraction outcomes. Measured manifolds are studied against Method of Moments predictions of the array's response to plane wave excitation obtained with a detailed model of the sounder's array that includes the airborne platform and fairing housing. CEM manifolds reduce angle estimation uncertainty off nadir on average by a factor of 3 when applied to measurements, providing initial confirmation of the utility of the CEM model in predicting angle estimation performance of the sounder's airborne arrays. The research findings of this dissertation indicate that SAR sounder manifold calibration will significantly increase the scientific value of legacy ice sheet and glacier sounding data sets and lead to optimized designs of future remote sensing instrumentation for surveying the cryosphere

    Parametric array calibration

    Get PDF
    The subject of this thesis is the development of parametric methods for the calibration of array shape errors. Two physical scenarios are considered, the online calibration (self-calibration) using far-field sources and the offline calibration using near-field sources. The maximum likelihood (ML) estimators are employed to estimate the errors. However, the well-known computational complexity in objective function optimization for the ML estimators demands effective and efficient optimization algorithms. A novel space-alternating generalized expectation-maximization (SAGE)-based algorithm is developed to optimize the objective function of the conditional maximum likelihood (CML) estimator for the far-field online calibration. Through data augmentation, joint direction of arrival (DOA) estimation and array calibration can be carried out by a computationally simple search procedure. Numerical experiments show that the proposed method outperforms the existing method for closely located signal sources and is robust to large shape errors. In addition, the accuracy of the proposed procedure attains the Cram´er-Rao bound (CRB). A global optimization algorithm, particle swarm optimization (PSO) is employed to optimize the objective function of the unconditional maximum likelihood (UML) estimator for the farfield online calibration and the near-field offline calibration. A new technique, decaying diagonal loading (DDL) is proposed to enhance the performance of PSO at high signal-to-noise ratio (SNR) by dynamically lowering it, based on the counter-intuitive observation that the global optimum of the UML objective function is more prominent at lower SNR. Numerical simulations demonstrate that the UML estimator optimized by PSO with DDL is optimally accurate, robust to large shape errors, and free of the initialization problem. In addition, the DDL technique is applicable to a wide range of array processing problems where the UML estimator is employed and can be coupled with different global optimization algorithms

    Non circular sources localization using an uncalibrated array

    Get PDF
    We present in this article a self-calibration method for uncalibrated array of sensors. The proposed algorithm estimates the unknown sensors gain and phase. The originality of our approach is in the consideration of non circularity of the impinging signals. We show that this method works even in the case where the number of sources is larger than the number of sensors. Simulation examples are processed in order to show the behaviour of our algorithm, in terms of convergence speed and estimation accuracy.Cet article présente un algorithme d'autocalibration d'une antenne multicapteur. Cet algorithme permet d'estimer le gain et la phase des capteurs, dont la connaissance précise est nécessaire pour localiser les sources en présence. L'originalité de notre approche réside dans la prise en compte de la non circularité des sources. L'exploitation de cette caractéristique permet d'augmenter la dimension de l'espace des observations, et de localiser des sources en nombre supérieur à celui des capteurs. Des simulations montrent que la performance de cet algorithme en terme de rapidité de convergence et de précision des estimations est satisfaisante

    Sensor Array Processing with Manifold Uncertainty

    Get PDF
    <p>The spatial spectrum, also known as a field directionality map, is a description of the spatial distribution of energy in a wavefield. By sampling the wavefield at discrete locations in space, an estimate of the spatial spectrum can be derived using basic wave propagation models. The observable data space corresponding to physically realizable source locations for a given array configuration is referred to as the array manifold. In this thesis, array manifold ambiguities for linear arrays of omni-directional sensors in non-dispersive fields are considered. </p><p>First, the problem of underwater a hydrophone array towed behind a maneuvering platform is considered. The array consists of many hydrophones mounted to a flexible cable that is pulled behind a ship. The towed cable will bend or distort as the ship performs maneuvers. The motion of the cable through the turn can be used to resolve ambiguities that are inherent to nominally linear arrays. The first significant contribution is a method to estimate the spatial spectrum using a time-varying array shape in a dynamic field and broadband temporal data. Knowledge of the temporal spectral shape is shown to enhance detection performance. The field is approximated as a sum of uncorrelated planewaves located at uniform locations in angle, forming a gridded map on which a maximum likelihood estimate for broadband source power is derived. Uniform linear arrays also suffer from spatial aliasing when the inter-element spacing exceeds a half-wavelength. Broadband temporal knowledge is shown to significantly reduce aliasing and thus, in simulation, enhance target detection in interference dominated environments. </p><p>As an extension, the problem of towed array shape estimation is considered when the number and location of sources are unknown. A maximum likelihood estimate of the array shape using the field directionality map is derived. An acoustic-based array shape estimate that exploits the full 360^\circ field via field directionality mapping is the second significant contribution. Towed hydrophone arrays have heading sensors in order to estimate array shape, but these sensors can malfunction during sharp turns. An array shape model is described that allows the heading sensor data to be statistically fused with heading sensor. The third significant contribution is method to exploit dynamical motion models for sharp turns for a robust array shape estimate that combines acoustic and heading data. The proposed array shape model works well for both acoustic and heading data and is valid for arbitrary continuous array shapes.</p><p>Finally, the problem of array manifold ambiguities for static under-sampled linear arrays is considered. Under-sampled arrays are non-uniformly sampled with average spacing greater than a half-wavelength. While spatial aliasing only occurs in uniformly sampled arrays with spacing greater than a half-wavelength, under-sampled arrays have increased spatial resolution at the cost of high sidelobes compared to half-wavelength sampled arrays with the same number of sensors. Additionally, non-uniformly sampled arrays suffer from rank deficient array manifolds that cause traditional subspace based techniques to fail. A class of fully agumentable arrays, minimally redundant linear arrays, is considered where the received data statistics of a uniformly spaced array of the same length can be reconstructed in wide sense stationary fields at the cost of increased variance. The forth significant contribution is a reduced rank processing method for fully augmentable arrays to reduce the variance from augmentation with limited snapshots. Array gain for reduced rank adaptive processing with diagonal loading for snapshot deficient scenarios is analytically derived using asymptotic results from random matrix theory for a set ratio of sensors to snapshots. Additionally, the problem of near-field sources is considered and a method to reduce the variance from augmentation is proposed. In simulation, these methods result in significant average and median array gains with limited snapshots.</p>Dissertatio
    corecore