20,540 research outputs found
Males of Ichthyofilaria argentinensis Incorvaia, 1999 and I. bergensis (Wülker, 1930) (Dracunculoidea: Guyanemidae): New morphological aspects and emendation of the generic diagnosis
The adult male of dracunculoid nematode Ichthyofilaria argentinensis Incorvaia, 1999 (Guyanemidae) is described for the first time based on specimens found in the swimbladder of its type host, Merluccius hubbsi Marini (Merlucciidae), caught off the coast of Buenos Aires, Argentina (western Atlantic Ocean). In addition, the males of Ichthyofilaria bergensis (Wülker, 1930) Køie, 1993 are redescribed from specimens collected from the body cavity and visceral surface of Molva macrophthalma (Rafinesque) (Lotidae) caught in the western Mediterranean Sea, off the coast of Sardinia. Light and scanning electron microscopy examinations revealed some new morphological features for the genus, such as a pair of deirids located near the end of muscular oesophagus, the body wall conspicuously twisted immediately anterior to the cloaca, the presence of a copulatory plate, one pair of adcloacal papillae and a pair of phasmids situated on the posterior half of the tail. On the basis of this material, the generic diagnosis of Ichthyofilaria is modified to include some of these newly observed features, as well as to indicate the absence of spicules. The diagnosis of Guyanemidae is extended to include that a copulatory plate and/or two spicules may be present as characteristics for this family.Fil: Cantatore, Delfina María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Merella, Paolo. Università Degli Studi Di Sassari; ItaliaFil: Timi, Juan Tomas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentin
Direct and indirect selection on flowering time, water-use efficiency (WUE, δ (13)C), and WUE plasticity to drought in Arabidopsis thaliana.
Flowering time and water-use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time, WUE, and WUE plasticity to drought in Arabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) Is WUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions of A. thaliana grown in well-watered and season-ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment. WUE and flowering time were consistently positively genetically correlated. WUE was correlated with WUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and low WUE, with drought favoring earlier flowering significantly more than well-watered conditions. Selection for lower WUE was marginally stronger under drought. There were no net fitness costs of WUE plasticity. WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation between WUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions of A. thaliana. WUE plasticity may be favored over completely fixed development in environments with periodic drought
Water use efficiency of China\u27s terrestrial ecosystems and responses to drought
Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China’s terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg−1 H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and the increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. “Turning-points” were observed for southern China where moderate and extreme droughts reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate change particularly as drought is projected to increase in both frequency and severity
Global patterns, trends, and drivers of water use efficiency from 2000 to 2013
Water use efficiency (WUE; gross primary production [GPP]/evapotranspiration [ET]) estimates the tradeoff between carbon gain and water loss during photosynthesis and is an important link of the carbon and water cycles. Understanding the spatiotemporal patterns and drivers of WUE is helpful for projecting the responses of ecosystems to climate change. Here we examine the spatiotemporal patterns, trends, and drivers of WUE at the global scale from 2000 to 2013 using the gridded GPP and ET data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). Our results show that the global WUE has an average value of 1.70 g C/kg H2O with large spatial variability during the 14-year period. WUE exhibits large variability with latitude. WUE also varies much with elevation: it first remains relatively constant as the elevation varies from 0 to 1000 m and then decreases dramatically. WUE generally increases as precipitation and specific humidity increase; whereas it decreases after reaching maxima as temperature and solar radiation increases. In most land areas, the temporal trend of WUE is positively correlated with precipitation and specific humidity over the 14-year period; while it has a negative relationship with temperature and solar radiation related to global warming and dimming. On average, WUE shows an increasing trend of 0.0025 g C·kg−1 H2O·yr−1 globally. Our global-scale assessment of WUE has implications for improving our understanding of the linkages between the water and carbon cycles and for better projecting the responses of ecosystems to climate change
Evapotranspiration and water use efficiency in relation to climate and canopy nitrogen in U.S. forests
Understanding relations among forest carbon (C) uptake and water use is critical for predicting forest-climate interactions. Although the basic properties of tree-water relations have long been known, our understanding of broader-scale patterns is limited by several factors including (1) incomplete understanding of drivers of change in coupled C and water fluxes and water use efficiency (WUE), (2) difficulty in reconciling WUE estimates obtained at different scales, and (3) uncertainty in how evapotranspiration (ET) and WUE vary with other important resources such as nitrogen (N). To address these issues, we examined ET, gross primary production (GPP), and WUE at 11 AmeriFlux sites across North America. Our analysis spanned leaf and ecosystem scales and included foliar δ13C, δ18O, and %N measurements; eddy covariance estimates of GPP and ET; and remotely sensed estimates of canopy %N. We used flux data to derive ecosystem WUE (WUEe) and foliar δ13C to infer intrinsic WUE. We found that GPP, ET, and WUEe scaled with canopy %N, even when environmental variables were considered, and discuss the implications of these relationships for forest-atmosphere-climate interactions. We observed opposing patterns of WUE at leaf and ecosystem scales and examined uncertainties to help explain these opposing patterns. Nevertheless, significant relationship between C isotope-derived ci/ca and GPP indicates that δ13C can be an effective predictor of forest GPP. Finally, we show that incorporating species functional traits—wood anatomy, hydraulic strategy, and foliar %N—into a conceptual model improved the interpretation of Δ13C and δ18O vis-à-vis leaf to canopy water-carbon fluxes
Weyl-Underhill-Emmrich quantization and the Stratonovich-Weyl quantizer
Weyl-Underhill-Emmrich (WUE) quantization and its generalization are
considered. It is shown that an axiomatic definition of the Stratonovich-Weyl
(SW) quantizer leads to severe difficulties. Quantization on the cylinder
within the WUE formalism is discussed.Comment: 15+1 pages, no figure
The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana.
Ecologists and physiologists have documented extensive variation in water use efficiency (WUE) in Arabidopsis thaliana, as well as association of WUE with climatic variation. Here, we demonstrate correlations of whole-plant transpiration efficiency and carbon isotope composition (δ(13)C) among life history classes of A. thaliana. We also use a whole-plant cuvette to examine patterns of co-variation in component traits of WUE and δ(13)C. We find that stomatal conductance (g s) explains more variation in WUE than does A. Overall, there was a strong genetic correlation between A and g s, consistent with selection acting on the ratio of these traits. At a more detailed level, genetic variation in A was due to underlying variation in both maximal rate of carboxylation (V cmax) and maximum electron transport rate (Jmax). We also found strong effects of leaf anatomy, where lines with lower WUE had higher leaf water content (LWC) and specific leaf area (SLA), suggesting a role for mesophyll conductance (g m) in variation of WUE. We hypothesize that this is due to an effect through g m, and test this hypothesis using the abi4 mutant. We show that mutants of ABI4 have higher SLA, LWC, and g m than wild-type, consistent with variation in leaf anatomy causing variation in g m and δ(13)C. These functional data also add further support to the central, integrative role of ABI4 in simultaneously altering ABA sensitivity, sugar signaling, and CO2 assimilation. Together our results highlight the need for a more holistic approach in functional studies, both for more accurate annotation of gene function and to understand co-limitations to plant growth and productivity
A review of growth stage deficit irrigation affecting sticky maize production
The shortage of water resources influences the future sustainability of sticky Maize (Zea mays L.) production. Deficit irrigation (DI) – a water management strategy – has gained much attention from scientists because of enhanced water use efficiency (WUE). Nonetheless, in reality, when applying this technique, its impact on yield and economic returns should be considered. Through an analytical literature review, this study examined the effect of growth stage DI on Maize production factors, i.e. yield, WUE, and economic returns. The results revealed that Maize’s WUE could be improved with the lowest reduction in yield as water stress was imposed during the vegetative or maturation growth stages. Therefore, the profitable returns could be reached even if the yield was reduced; however, the economic return was sensitive to commodity prices. The present review addressed that the Maize flexible capacities under growth stage water stress presented an opportunity for the optimization of irrigated water and profit preservation by accurately judging the managing time of irrigation implementation
Dryland maize yields and water use efficiency in response to tillage and nutrient management practices in China
Rainfed crop production in northern China is constrained by low and variable rainfall. This study explored the effects of tillage and nutrient management practices on maize (Zea mays L.) yield and water use efficiency (WUE), at Shouyang Dryland Farming Experimental Station in northern China during 2003-2008. The experiment was set-up using a split-plot design with 3 tillage methods as main treatments: conventional, reduced (till with crop residue incoperated in fall but no-till in spring), and no-till. Sub-treatments were 3 NP fertilizer rates: 105-46, 179-78 and 210-92 kg N and P ha. -1 Maize grain yields were greatly influenced by the amount of growing season rainfall, and by soil water contents at sowing. Mean grain yields over the 6-year period in response to tillage treatments were 5604, 5347 and 5185 kg ha, under reduced, no-till and conventional tillage, respectively. Mean WUE was 13.7, 13.6 and 12.6 kg ha mm under reduced, no-till, and conventional tillage, respectively. Mean soil water contents at sowing and at harvest were significantly influenced by tillage treatments. At harvest time, the no-till treatment had ~8-12% more water in the soil than the conventional and reduced tillage treatments. Under conventional tillage, grain yields increased with NP fertilizer application rates. However, under reduced tillage, grain yields were highest with lowest NP fertilizer application rate. In conclusion, grain yields and WUE were highest under reduced tillage at modest NP fertilizer application rates of 105 kg N and 46 kg P per ha. No-till increased soil water storage by 8-12% and improved WUE compared to conventional tillage
Exploring the link between more negative osmotic potential and ryegrass summer performance
This paper outlines recent research studying within-population variation in selected New Zealand perennial ryegrass cultivars, for traits related to tolerance of summer moisture deficit. Two clonal replicates of 220 genotypes from ‘Grasslands Nui’ (Nui, n=50), ‘Grasslands Samson’ Samson, n=80), and ‘Trojan’ (n=90) were exposed to a 1 month of moisture deficit challenge, with plant water relations measurements performed to evaluate putative drought-response mechanisms. Water use of individual genotypes ranged from 1000 g water/g DM indicating large within-population variation for this trait. Mean WUE for Nui, Samson, and Trojan was, respectively, 424±16, 412±10, and 319±9 g water/g DW (P<0.001), suggesting that commercial plant breeding may have indirectly reduced water use in modern cultivars without specific focus on water relations. Principal component analysis indicated more negative osmotic potential may contribute to reduced water use while maintaining yield under water deficit, giving a potential focus for future breeding selection targeting summer water deficit tolerance.fals
- …