130 research outputs found
Genomic Analysis of Immune Response against Vibrio Cholerae Hemolysin in Caenorhabditis elegans
Vibrio cholerae cytolysin (VCC) is among the accessory V. cholerae virulence factors that may contribute to disease pathogenesis in humans. VCC, encoded by hlyA gene, belongs to the most common class of bacterial toxins, known as poreforming toxins (PFTs). V. cholerae infects and kills Caenorhabditis elegans via cholerae toxin independent manner. VCC is required for the lethality, growth retardation and intestinal cell vacuolation during the infection. However, little is known about the host gene expression responses against VCC. To address this question we performed a microarray study in C. elegans exposed to V. cholerae strains with intact and deleted hlyA genes. Many of the VCC regulated genes identified, including C-type lectins, Prion-like (glutamine [Q]/asparagine [N]-rich)-domain containing genes, genes regulated by insulin/ IGF-1-mediated signaling (IIS) pathway, were previously reported as mediators of innate immune response against other bacteria in C. elegans. Protective function of the subset of the genes up-regulated by VCC was confirmed using RNAi. By means of a machine learning algorithm called FastMEDUSA, we identified several putative VCC induced immune regulatory transcriptional factors and transcription factor binding motifs. Our results suggest that VCC is a major virulence factor, which induces a wide variety of immune response- related genes during V. cholerae infection in C. elegans
Investigating age- and virulence factor- dependent innate immune activation during neonatal meningitis associated E. coli infection
Neonatal meningitis-associated Escherichia coli (NMEC) is a leading cause of early-onset sepsis and meningitis. While current antibiotic protocols have significantly reduced mortality associated with neonatal sepsis and meningitis, surviving infants are at a significantly increased risk of developing life-long neurologic impairment compared to healthy infants. This continued risk of lasting neurologic damage along with a recent rise in antibiotic resistant NMEC strains has precipitated a need for new therapeutic strategies. Targeted immune-based therapeutics may serve as desirable adjunct therapies; however, there are many challenges to their development. The neonatal immune system is immature compared to the immune system of adults, leading to an increased risk of infection. Here we assess the role of IL-1 secretion, which is known to be diminished in neonates, in the pathogenesis of a murine model of NMEC infection. We further highlight one potential mechanism for decreased IL-1 secretion during the neonatal period. To further complicate the development of immune-based therapeutics aimed at treating NMEC infection, NMEC strains can possess many different virulence factors with the potential to alter immune cell activation. While some of these factors, such as OmpA, have been well-characterized in the context of NMEC infection, many potential virulence factors have not. Here we show that the pore-forming toxin [alpha]-hemolysin activates purinergic receptors, leading to improved bacterial clearance and decreased mortality in a neonatal mouse model of NMEC infection. Together, the data presented here provides new insight into both neonatal immunity and the role of virulence factor-specific immune activation on the pathogenesis of NMEC infection, and may serve as a stepping stone for the development of not only new immune-based therapeutics, but also new diagnostic and prognostic tools for use during neonatal infection.Includes bibliographical references
Variation in hemolytic activity of Brachyspira hyodysenteriae strains from pigs
Brachyspira hyodysenteriae is the primary cause of swine dysentery, which is responsible for major economic losses to the pig industry worldwide. The hemolytic activity of 10 B. hyodysenteriae strains isolated from stools of pigs with mild to mucohemorrhagic diarrhea was compared and seven hemolysis associated genes were sequenced. Hemolysis induced by these strains varied from strong to near absent. One weakly hemolytic B. hyodysenteriae strain showed sequence changes in five hemolysis associated genes (tlyA, tlyB, hemolysin III, hemolysin activation protein and hemolysin III channel protein) resulting in amino acid substitutions. The occurrence of weakly hemolytic strains identifiable as B. hyodysenteriae should be taken into account in swine dysentery diagnostics. The presence of these strains may affect herd dysentery status, with great impact on a farms trading opportunities
Structure of a bacterial toxin-activating acyltransferase.
Secreted pore-forming toxins of pathogenic Gram-negative bacteria such as Escherichia coli hemolysin (HlyA) insert into host-cell membranes to subvert signal transduction and induce apoptosis and cell lysis. Unusually, these toxins are synthesized in an inactive form that requires posttranslational activation in the bacterial cytosol. We have previously shown that the activation mechanism is an acylation event directed by a specialized acyl-transferase that uses acyl carrier protein (ACP) to covalently link fatty acids, via an amide bond, to specific internal lysine residues of the protoxin. We now reveal the 2.15-Å resolution X-ray structure of the 172-aa ApxC, a toxin-activating acyl-transferase (TAAT) from pathogenic Actinobacillus pleuropneumoniae. This determination shows that bacterial TAATs are a structurally homologous family that, despite indiscernible sequence similarity, form a distinct branch of the Gcn5-like N-acetyl transferase (GNAT) superfamily of enzymes that typically use acyl-CoA to modify diverse bacterial, archaeal, and eukaryotic substrates. A combination of structural analysis, small angle X-ray scattering, mutagenesis, and cross-linking defined the solution state of TAATs, with intermonomer interactions mediated by an N-terminal α-helix. Superposition of ApxC with substrate-bound GNATs, and assay of toxin activation and binding of acyl-ACP and protoxin peptide substrates by mutated ApxC variants, indicates the enzyme active site to be a deep surface groove.This work was supported by UK Medical Research Council and the Wellcome Trust Grants (to C.H. and V.K.).This is the author accepted manuscript. The final version is available from PNAS via http://dx.doi.org/10.1073/pnas.150383211
Genetic and Phenotypic Virulence Potential of Non-O1/Non-O139 Vibrio cholerae Isolated from German Retail Seafood
Non-O1 and non-O139 Vibrio cholerae (NOVC) can cause gastrointestinal infections in humans. Contaminated food, especially seafood, is an important source of human infections. In this study, the virulence potential of 63 NOVC strains isolated from retail seafood were characterized at the genotypic and phenotypic levels. Although no strain encoded the cholera toxin (CTX) and the toxin-coregulated pilus (TCP), several virulence factors, including the HlyA hemolysin, the cholix toxin ChxA, the heat-stable enterotoxin Stn, and genes coding for the type 3 and type 6 secretion systems, were detected. All strains showed hemolytic activity against human and sheep erythrocytes: 90% (n = 57) formed a strong biofilm, 52% (n = 33) were highly motile at 37 °C, and only 8% (n = 5) and 14% (n = 9) could resist ≥60% and ≥40% human serum, respectively. Biofilm formation and toxin regulation genes were also detected. cgMLST analysis demonstrated that NOVC strains from seafood cluster with clinical NOVC strains. Antimicrobial susceptibility testing (AST) results in the identification of five strains that developed non-wildtype phenotypes (medium and resistant) against the substances of the classes of beta-lactams (including penicillin, carbapenem, and cephalosporin), polymyxins, and sulphonamides. The phenotypic resistance pattern could be partially attributed to the acquired resistance determinants identified via in silico analysis. Our results showed differences in the virulence potential of the analyzed NOVC isolated from retail seafood products, which may be considered for further pathogenicity evaluation and the risk assessment of NOVC isolates in future seafood monitoring
Uropathogenic E. coli Induce Different Immune Response in Testicular and Peritoneal Macrophages: Implications for Testicular Immune Privilege
Infertility affects one in seven couples and ascending bacterial infections of the male genitourinary tract by Escherichia coli are an important cause of male factor infertility. Thus understanding mechanisms by which immunocompetent cells such as testicular macrophages (TM) respond to infection and how bacterial pathogens manipulate defense pathways is of importance. Whole genome expression profiling of TM and peritoneal macrophages (PM) infected with uropathogenic E. coli (UPEC) revealed major differences in regulated genes. However, a multitude of genes implicated in calcium signaling pathways was a common feature which indicated a role of calcium-dependent nuclear factor of activated T cells (NFAT) signaling. UPEC-dependent NFAT activation was confirmed in both cultured TM and in TM in an in vivo UPEC infectious rat orchitis model. Elevated expression of NFATC2-regulated anti-inflammatory cytokines was found in TM (IL-4, IL-13) and PM (IL-3, IL-4, IL-13). NFATC2 is activated by rapid influx of calcium, an activity delineated to the pore forming toxin alpha-hemolysin by bacterial mutant analysis. Alpha-hemolysin suppressed IL-6 and TNF-α cytokine release from PM and caused differential activation of MAP kinase and AP-1 signaling pathways in TM and PM leading to reciprocal expression of key pro-inflammatory cytokines in PM (IL-1α, IL-1β, IL-6 downregulated) and TM (IL-1β, IL-6 upregulated). In addition, unlike PM, LPS-treated TM were refractory to NFκB activation shown by the absence of degradation of IκBα and lack of pro-inflammatory cytokine secretion (IL-6, TNF-α). Taken together, these results suggest a mechanism to the conundrum by which TM initiate immune responses to bacteria, while maintaining testicular immune privilege with its ability to tolerate neo-autoantigens expressed on developing spermatogenic cells
HlyU Is a Positive Regulator of Hemolysin Expression in \u3cem\u3eVibrio anguillarum\u3c/em\u3e
The two hemolysin gene clusters previously identified in Vibrio anguillarum, the vah1 cluster and the rtxACHBDE cluster, are responsible for the hemolytic and cytotoxic activities of V. anguillarum in fish. In this study, we used degenerate PCR to identify a positive hemolysin regulatory gene, hlyU, from the unsequenced V. anguillarum genome. The hlyU gene of V. anguillarum encodes a 92-amino-acid protein and is highly homologous to other bacterial HlyU proteins. An hlyU mutant was constructed, which exhibited an ∼5-fold decrease in hemolytic activity on sheep blood agar with no statistically significant decrease in cytotoxicity of the wild-type strain. Complementation of the hlyU mutation restored both hemolytic activity and cytotoxic activity. Both semiquantitative reverse transcription-PCR (RT-PCR) and quantitative real-time RT-PCR (qRT-PCR) were used to examine expression of the hemolysin genes under exponential and stationary-phase conditions in wild-type, hlyU mutant, and hlyU complemented strains. Compared to the wild-type strain, expression of rtx genes decreased in the hlyU mutant, while expression of vah1 and plp was not affected in the hlyU mutant. Complementation of the hlyU mutation restored expression of the rtx genes and increased vah1 and plp expression to levels higher than those in the wild type. The transcriptional start sites in both the vah1-plp and rtxH-rtxB genes\u27 intergenic regions were determined using 5′ random amplification of cDNA ends (5′-RACE), and the binding sites for purified HlyU were discovered using DNA gel mobility shift experiments and DNase protection assays
Identity Determinants of the Translocation Signal for a Type 1 Secretion System
The toxin hemolysin A was first identified in uropathogenic E. coli strains and shown to be secreted in a one-step mechanism by a dedicated secretion machinery. This machinery, which belongs to the Type I secretion system family of the Gram-negative bacteria, is composed of the outer membrane protein TolC, the membrane fusion protein HlyD and the ABC transporter HlyB. The N-terminal domain of HlyA represents the toxin which is followed by a RTX (Repeats in Toxins) domain harboring nonapeptide repeat sequences and the secretion signal at the extreme C-terminus. This secretion signal, which is necessary and sufficient for secretion, does not appear to require a defined sequence, and the nature of the encoded signal remains unknown. Here, we have combined structure prediction based on the AlphaFold algorithm together with functional and in silico data to examine the role of secondary structure in secretion. Based on the presented data, a C-terminal, amphipathic helix is proposed between residues 975 and 987 that plays an essential role in the early steps of the secretion process.</jats:p
The TolC homologue of Brucella suis is involved in resistance to antimicrobial compounds and virulence
Brucella spp., like other pathogens, must cope with the environment of diverse host niches during the infection process. In doing this, pathogens evolved different type of transport systems to help them survive and disseminate within the host. Members of the TolC family have been shown to be involved in the export of chemically diverse molecules ranging from large protein toxins to small toxic compounds. The role of proteins from the TolC family in Brucella and other α-2-proteobacteria has been explored little. The gene encoding the unique member of the TolC family from Brucella suis (BepC) was cloned and expressed in an Escherichia coli mutant disrupted in the gene encoding TolC, which has the peculiarity of being involved in diverse transport functions. BepC fully complemented the resistance to drugs such as chloramphenicol and acriflavine but was incapable of restoring hemolysin secretion in the tolC mutant of & coli. An insertional mutation in the bepC gene strongly affected the resistance phenotype of B. suis to bile salts and toxic chemicals such as ethidium bromide and rhodamine and significantly decreased the resistance to antibiotics such as erythromycin, ampicillin, tetracycline, and norfloxacin. Moreover, the B. suis bepC mutant was attenuated in the mouse model of infection. Taken together, these results suggest that BepC-dependent efflux processes of toxic compounds contribute to B. suis survival inside the host. Copyright © 2007, American Society for Microbiology. All Rights Reserved.Fil:Posadas, D.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Martín, F.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Sabio Y Garcïa, J.V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Campos, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Zorreguieta, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
- …