39,440 research outputs found
Layer-by-layer formation of oligoelectrolyte multilayers: a combined experimental and computational study
For the first time, the combination of experimental preparation and results
of fully atomistic simulations of an oligoelectrolyte multilayer (OEM) made of
poly(diallyl dimethyl ammonium chloride)/poly(styrene sulfonate sodium salt)
(PDADMAC/PSS) is presented. The layer-by-layer growth was carried out by
dipping silica substrates in oligoelectrolyte solutions and was modeled by
means of atomistic molecular dynamics simulations with a protocol that mimics
the experimental procedure up to the assembly of four layers. Measurements of
OEM thickness, surface roughness and amount of adsorbed oligoelectrolyte chains
obtained from both approaches are compared. A good agreement between simulated
and experimental results was found, with some deviations due to intrinsic
limitations of both methods. However, the combination of information extracted
from simulations to support the analysis of experimental data can overcome such
restrictions and improve the interpretation of experimental results. On the
other hand, processes dominated by slower kinetics, like the destabilization of
adsorbed layers upon equilibration with the surrounding environment, are out of
reach for the simulation modeling approach, but they can be investigated by
monitoring in situ the oligoelectrolyte adsorption during the assembly process.
This demonstrates how the synergistic use of simulation and experiments
improves the knowledge of OEM properties down to the molecular scale
Mapping atomistic to coarse-grained polymer models using automatic simplex optimization to fit structural properties
We develop coarse-grained force fields for poly (vinyl alcohol) and poly
(acrylic acid) oligomers. In both cases, one monomer is mapped onto a
coarse-grained bead. The new force fields are designed to match structural
properties such as radial distribution functions of various kinds derived by
atomistic simulations of these polymers. The mapping is therefore constructed
in a way to take into account as much atomistic information as possible. On the
technical side, our approach consists of a simplex algorithm which is used to
optimize automatically non-bonded parameters as well as bonded parameters.
Besides their similar conformation (only the functional side group differs),
poly (acrylic acid) was chosen to be in aqueous solution in contrast to a poly
(vinyl alcohol) melt. For poly (vinyl alcohol) a non-optimized bond angle
potential turns out to be sufficient in connection with a special, optimized
non-bonded potential. No torsional potential has to be applied here. For poly
(acrylic acid), we show that each peak of the radial distribution function is
usually dominated by some specific model parameter(s). Optimization of the bond
angle parameters is essential. The coarse-grained forcefield reproduces the
radius of gyration of the atomistic model. As a first application, we use the
force field to simulate longer chains and compare the hydrodynamic radius with
experimental data.Comment: 34 pages, 3 tables, 16 figure
Investigating Interactions of Biomembranes and Alcohols: A Multiscale Approach
We study the interaction of lipid bilayers with short chain alcohols using
molecular dynamics on different length scales. We use detailed atomistic
modeling and modeling on the length scale where an alcohol is just an
amphiphilic dimer. Our strategy is to calibrate a coarse--grained model against
the detailed model at selected state points at low alcohol concentration and
then perform a wider range of simulations using the coarse--grained model. We
get semiquantitative agreement with experiment for the major observables such
as order parameter and area per molecule. We find a linear increase of area per
molecule with alcohol concentration. The alcohol molecules in both system
descriptions are in close contact with the glycerol backbone. Butanol molecules
can enter the bilayer to some extent in contrast to the behavior of shorter
alcohols. At very high alcohol concentrations we find clearly increased
interdigitation between leaflets.Comment: 14 pages, 6 figure
Open Boundary Simulations of Proteins and Their Hydration Shells by Hamiltonian Adaptive Resolution Scheme
The recently proposed Hamiltonian Adaptive Resolution Scheme (H-AdResS)
allows to perform molecular simulations in an open boundary framework. It
allows to change on the fly the resolution of specific subset of molecules
(usually the solvent), which are free to diffuse between the atomistic region
and the coarse-grained reservoir. So far, the method has been successfully
applied to pure liquids. Coupling the H-AdResS methodology to hybrid models of
proteins, such as the Molecular Mechanics/Coarse-Grained (MM/CG) scheme, is a
promising approach for rigorous calculations of ligand binding free energies in
low-resolution protein models. Towards this goal, here we apply for the first
time H-AdResS to two atomistic proteins in dual-resolution solvent, proving its
ability to reproduce structural and dynamic properties of both the proteins and
the solvent, as obtained from atomistic simulations.Comment: This document is the Accepted Manuscript version of a Published Work
that appeared in final form in Journal of Chemical Theory and Computation,
copyright \c{opyright} American Chemical Society after peer review and
technical editing by the publishe
Hierarchical approach to 'atomistic' 3-D MOSFET simulation
We present a hierarchical approach to the 'atomistic' simulation of aggressively scaled sub-0.1-μm MOSFETs. These devices are so small that their characteristics depend on the precise location of dopant atoms within them, not just on their average density. A full-scale three-dimensional drift-diffusion atomistic simulation approach is first described and used to verify more economical, but restricted, options. To reduce processor time and memory requirements at high drain voltage, we have developed a self-consistent option based on a solution of the current continuity equation restricted to a thin slab of the channel. This is coupled to the solution of the Poisson equation in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison to the full self-consistent solution. At low drain voltage, a single solution of the nonlinear Poisson equation is sufficient to extract the current with satisfactory accuracy. In this case, the current is calculated by solving the current continuity equation in a drift approximation only, also in a thin slab containing the MOSFET channel. The regions of applicability for the different components of this hierarchical approach are illustrated in example simulations covering the random dopant-induced threshold voltage fluctuations, threshold voltage lowering, threshold voltage asymmetry, and drain current fluctuations
- …